INTRODUCTION TO
DEC SYSTEM-10:
TIME-SHARING and BATCH

THIRD EDITION

T. W. SZE

PROFESSOR OF ELECTRICAL ENGINEERING

UNIVERSITY OF PITTSBURGH

copyright (C) 1974, 1977, 1980 by T. W. Sze

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of T. W. Sze, University of Pittsburgh, Pittsburgh,
Pennsylvania 15261, U.S.A.

Printed in the United States of America

Library of Congress Cataloging in Publication Data:

Sze, T. W.
Introduction to DEC System -10

Pittsburgh, Pa. : Univ. of Pittsburgh

Library of Congress Catalog Card Number: 80-54311

ii

CONTENTS

Contents iii
Preface to the Third Edition X
Chapter 1 INTRODUCTION 1

1.1 Batch Processing versus Time-Sharing 1
1.2 Time-Sharing System at Pitt 4
1.3 Computer Service 7

Remote Terminals 8
1.4 Communication with the Computer 8
1.5 Description of a Remote Terminal,
the DECwriter 11
1.6 The Keyboard 15
1.7 Other Types of Remote Terminals 18
1.8 Sign-On at the Remote Terminal 21
1.9 Password 23
1.10 Disk Storage Quota 23
1.11 Sign-Off Procedure) 25
Files 27
1.12 Basic Concept of Files 27
Exercises on a Time-Sharing Terminal 30
References 32
Chapter 2 TEXT EDITOR : 33
2.1 Introduction
2.2 Selected Terminology
A Primer of UPDATE Editor 37
2.3 Movement of Pointer, $TO, $AT and STRAVEL 37
2.4 Change of Text Material,
SCHANGE, SALTER and S$SUBSTITUTE 3y
2.5 Deletion of Lines, SDELETE 49
2.6 Output of Lines, STYPE 41
2.7 Line Insertion 41
2.8 Completion of an Editing Session,)
SDONE, SEND and $SFINISH 42
Other UPDATE Commands and Procedures 43
2.9 Line Insertion Mode 44
2,10 Compounded Editing Commands ' 47

iii

Chapter 3

211
2.12
2.13
2,14
2.15

Move Command, $MOVE

COPY Command

Editing—-Control-Function Switch Commands
Editing Function Value-Setting Commands
Miscellaneous Editing Commands

Selected Advanced Topics in UPDATE

2.16
2.17
2.18

Preparation and Use of Auxiliary Files
Conditional Editing Commands
Editing Programs

A Summary of File Management by UPDATE

2.19
2.20

File management Tasks
Examples of File Editing

Exercises

References

FORTRAN-10

Running a FORTRAN Program on DEC System-10

To Enter and Store a FORTRAN Program
To Edit a Stored FORTRAN Program
To Compile, Load and Execute
a Stored FORTRAN Program
Optional Switches
An Example of FORTRAN Processing

A Summmary of FORTRAN-10

WwbwWwwww
a . L) L]

LY

= b bt et b
OO U W

A Summary of Constants, Variables and Expressions

FORTRAN-10 Statements

A Summary of FORTRAN-10 Compilation
Control Statements

A Summary of Specification Statements

A Summary of Assignment Statements

A Summary of Control Statements

Terminology Used in FORTRAN-10
INPUT/OUTPUT (I/0) Statements

A Summary of FORTRAN-10 READ Statements

A Summary of FORTRAN-10 WRITE Statements

A Summary of FORTRAN-10 I/0 Statements

FORTRAN~-10 File Control Statements

Format Statements

FORTRAN-10 Device Control Statements

FORTRAN~10 Subprogram Statements

Subprogram Libraries in FORTRAN

3.20
3.21

3.22
3.23

Selected FORTRAN-10 Subprograms Developed by DEC
Selected Subprograms Developed at
the Pitt Computer Center
The SUBSET Subprogram Package
Compr ehensive FORTRAN Subroutine Libraries

iv

49
52
54

60
63

63
65

72

72
74

77

80

81
82

82
84

85
88
91

93

93
95

97
98
99
100

101
104
105
106
107
110
112
114

117
117
118

123
129

Chapter 4

Chapter 5

4 Array Processor
5 FORTRAN 77

FORTRAN PROGRAM DEBUGGING

4,1 Introduction
4.2 Types of Errors
Pre~-Computer—-Run Debugging

.3 Walkthrough by Flow Charts
-4 The FORFLO Program

Off-Line Debugging by Code Inspection

4.5 A Checklist for Data Errors

4,6 A Checklist for Computation Errors
4,7 A Checklist for lLogic Errors

4,8 A Checklist for Input/Output Errors
4,9 A Checklist for Program Readability
On-Line Program Debugging by Diagnostic Reports
4,10 Compiler Diagnostics

4,11 Run—-Time Diagnostics

4,12 Dimension Out-of Bound Errors
On-Line Debugging by Conditional Compiling
4,13 The D-Statement

On-Line Debugging by Tracing Aids

4,14 The TRACE Program
4,15 The MSFLVL Subroutine

On-Line Debugging by an Interactive debugger
4,16 The FORDDT Processor

4.17 Basic FORDDT Commands

4,18 A FORDDI Example

Exercise

References

MODELING AND SIMULATION BY CSMP
Introduction

5.1 Dynamic Modeling of Systems

5.2 Differential Equations

5.3 Preparation for Digital Computer Solution
5.4 CSMP as a High-Order Language (HOL)

134
135
137

137
138

139

139
142

146
l4e
149
150
152
152
154
154
155
168
170
170
173

173
173

175
175
176
179
183

184

185
185

185
187
187
189

-

Chapter 6

A CSMP Primer

5.5 Symbols, Constants, Operators,
Functions and Labels

6 Format of CSMP

7 Structure of a CSMP Program

8 SORT and NOSORT Sections

9 Structure Statements

10 - Data Statements

11 Control Statements

Running CSMP at Pitt

7.12 CSMP Job Preparation

5.13 CSMP Job Execution

5.14 Other Modeling and Simulation Languages
CSMP Examples

5.15 CSMP Examples

Exercises

References

A PRIMER OF COMPUTER GRAPHICS WITH DEC-10
6.1 Computer Graphics and Computer Graphics Devices
Graphing and Plotting

6.2 Plotting on a Terminal or Printer
6.3 Plotting on a Plotter
6.4 Preview of Plotter Output

General Graphics

6.5 Basic Principle of a Digital Plotter
6.6 A Primer on CalComp Plotter Subroutines
6.7 Examples of CalComp Programming

A Primer on Graphics Software for Graphic Terminals

Basic principle of a Graphics Terminal
Terminology

0 Screen Graphics and Virtual Graphics

1 A Basic Set of TCS Subroutines

2 Interactive Graphics

3 A Summary of Other TCS Subprograms

GO OOV Oh

Three Dimensional Displays
6.14 Three Dimenional Displays
Exercises

References

vi

194

194
194
195
195
196
201
202
207
207
209
209
211
211
221

224

225
225
227
227
236
241
245
245
247
249
259
259
260
261
264
271
275
280
280
282

283

Chapter 7

Chapter 8

SELECTED SERVICE PROGRAMS AND PROCEDURES

1 Introduction

2 The Standard PIP Command Structure

3 Transfer of Multiple Files, the X-Switch
4 Transfer of Files with Editing

5 File Directory Management

6 Multiple PIP Switches

7 A Summary of PIP Switches

7.8 The SORT Program

RUNOFF

7.9 RUNOFF Operating Procedure
7.10 How RUNOFF Works

7.11 Basic RUNOFF Commands

7.12 Special Text Characters

7.13 Selected RUNOFF Switches
7.14 A Summary of RUNOFF Commands

7.15 Introduction

7.16 To Create a Control File

7.17 To Submit a BATCH Job at a Terminal
Virtual Memory

7.18 The Virtual Memory Procedure

References

OPERATING SYSTEM COMMANDS

8.1 Introduction

Job Initialization and Termination

8.2 Job Initiation at a Remote Terminal
8.3 Password

8.4 Job Termination at a Terminal

Communication and Status Reporting

8.5 Communication in the Time—-Sharing System
8.6 Status Report Commands

Source File Preparation

8.7 Source File Preparation Commands

vii

285
285
285
289
291
291
294
294
296
297
297
299
300
301
302
307
308
310
314
314
314
316
317
320

319

320
320
326
326
328
328
330

330
333

335

335

Chapter 9

Chapter 10

Allocation of Facilities

8 Facility Allocation by Monitor

.9 Allocation of Unrestricted Devices
.10 Allocation of Restricted Devices
.11 Remote Terminal Control Commands
Program Execution and Control

8.12 Execution and Related Commands
File Management and Control

8.13 File Management Commands

8.14 File OQutput Commands

8.15 The QUEUE Command

8.16 Operating System Command Locally Enhanced

References

MULTIPROGRAM BATCH

Introduction

9.1 Introduction

9.2 BATCH Software System

9.3 Procedure of Running a Batch Job

Control File

4 Batch Control Commands
5 Sign—-On Batch Control Commands
6 Sign-Off Card, S$SEOJ
7 The End-of-Deck Card, $SEOD
8 Batch Control Commands for Disk Storage
9 Batch Control Commands for Compiling
and Execution
9.10 A Summary of Batch Deck Modules
9.11 Batch Control Commands for Error Recovery
9.12 Miscellaneous Topics in Batch Control Commands

Submitting a Batch Job

9.13 Submitting Batch Jobs in Cards
9.14 Submitting Batch Jobs from a Terminal

References

TAPE HANDLING

10.1 Magnetic Tape

10.2 DECtape

10.3 Preliminary Procedures

10.4 Allocation of Tape Drives and Mounting of Tapes
10.5 Sequential Processing of Magtapes

10.6 FORTRAN-10 Execution-Time Tape Control

viii

336

336
336
339
344

347
347
350

350
354
355
364

366

367
367

367
368
370

371

371
371
374
375
375

376
379
384
385

389

389
389

391

393

393
395
396
398
399
399

Appendix A

Appendix B

Index A

Index B

Tape Service Programs

10.7 The UARC Program

10.8 The ACCESS Program

10.9 The ARCHIVE Program

10.10 The CHANGE Program

10.11 Tape Transfer and Comparison Programs -
MTCOPY, DICOPY and FILCOM

References

A SUMMARY OF PIL LANGUAGE

£y
(=)

* o+ o 3 »

»

C>‘3>J>D>"J>'D>'?D>'B>'D’B>D>D’ >
HHE PO 00 WN

& WwihhH o

Rules on PIL Variables, Constants
and Expressions

Statement Labels

Some Basic PIL Statements

Loop Statements

Input/Output Statements

Input/Output Format

Subprogram Statements

File Management Statements

File Input/Output

File Control Statements

Execution-time Function and Program Step Input

PIL-FORTRAN Linkage

PIL-OPRSTK Linkage

Other PIL Commands

References

INTERACTIVE ENGINEERING PROGRAM LIBRARY

GENERAL INDEX

COMMANDS, PROGRAMS, AND PROCESSORS

ix

401

401
403
405
406

408

411

412

412
413
413
416
41o
416
417
418
419
419
420
420
421
421

422
423

438

443

PREFACE OF THE THIRD EDITION

Completion of the Third Edition marked the tenth year since the book
project first started. Materials of the First Edition were the results of
organizing the class notes of a freshman course I developed and taught. The
organization of the text was aimed in such a way that (1) materials were
presented in several levels of depth so that a beginner can quickly acquire a
basic skill, and (2) a subjective judgement was exercised in the relevancy of
materials to the intended readers, who will use the computer as a tool in their
fields but have no desire to become professional programmers.

The experience of using these materials, class notes and earlier editions
of the book, seems to bear out this rationale. So the Second Edition simply
updated the progress in the DEC-10 hardware and softwares. However, during the
past few years, there have been very significant changes in the computer
maturity of our student body in Engineering. High school instructions,
microcomputer projects, hobby electronics all have contributed to this. As a
result, the changes in the Third Edition involve a great deal more than just
updating the changes and progress in DEC-10. Specifically:

(1) Three chapters in PIL and BASIC languages are deleted, and they are
replaced by chapters in Program Debugging, Modeling and Simulation, and Computer
Graphics. Only a summary of PIL is retained as an appendix in the Third
Edition.

(2) The book is now sharply directed to the goal of using the computer as
a system. Therefore, although FORTRAN is the fundamental programming language,
the book is not intended to be a programming manual. At the School of
Engineering, this book was used in a second course, after the students have
their initial instructions in the FORTRAN language.

(3) In using the computer as a system, the book aims to remedy the most
neglected and yet the most important phase of computer processing, namely, the
debugging of a program. Many people still consider that as an art, and cannot
be taught. The Third Edition makes a serious attempt on the study of program
debugging. BAn entire chapter is devoted to that subject.

(4) The chapter sequence is re-arranged so that the front part of the
text would be appropriate as a text, and the latter part as a reference. In
addition, exercise problems have been added to help readers sharpen their
skills.

As in the last two editions, I am most indebted to my family. In spite
of their own busy professional and college schedules, my daughter Deborah and my
son Daniel found time to read the manuscript and made both technical and
grammatical suggestions. My wife Frances, beside being understanding and
encouraging, took charge of style review and proof reading, and made suggestions
that increased the readability immeasurably. Students and colleagues, too
numerous to list, have been most helpful; their questions, suggestions and
ideas were indispensable. Finally, I wish to acknowledge the Computer Center at
the University of Pittsburgh for providing the facilities and environment that
made this book possible.

November 23, 1980
Pittsburgh, Pennsylvania T. W. Sze

CHAPTER 1

INTRODUCTION

1.1 Batch Processing versus Time-Sharing

Once upon a time, when a computer user wanted to run a program, he would
have to go through the following steps:

(1) The user submitted his program and data deck to the Computer Center.

(2) The decks of cards submitted by different users were stacked
together to form a batch, each deck with its proper identification.
All jobs in one batch were then executed in one "run", hence the
name "batch processing”. The information on the punched cards in a
batch were first copied into a reel of magnetic tape by means of a
small and relatively inexpensive computer. The reason for this was
that the card-input to the main computer was a slow and therefore
expensive process.

(3) The magnetic tape so prepared became the input medium to the main
computer. At the scheduled time, the jobs in the batch were run and
the outputs (printouts, cards, tapes, etc.) were obtained.
Sometimes the outputs were recorded on another reel of magnetic
tape; then output printing may be done off-line so as not to slow
down the computer operation.

(4) The outputs were returned to a designated place of the Computer
Center for the users to pick up.

During the execution of a job in one batch, such as to compile and
execute a FORTRAN program, each Jjob had the undivided service of the entire
computer, with all of its memory, input and output devices, supporting services
and library routines. When the next job entered the computer, that job in turn
received the total service of the computer for the duration of the job
execution, however brief.

Economics and efficiency considerations have led to the techniques of
multi-programming in batch processing, so that several programs may be executed
interleavingly when devices required for execution are not in demand at the same
time, or if a priority of queuing can be clearly established.

From the point of view of economy and machine efficiency, batch
processing indeed represents the best computer utilization because it can serve
a maximum of users within a given span of time. The prime consideration is then

1

2 CHAPTER 1 INTRODUCTION

the efficient usage of computing resources, even if it is done at the expense of
efficient usage of user resources. Therefore, from the users' point of view,
batch processing has many limitations.

The time interval between submitting a card deck to the Computer Center
and retrieving the results, called the turn-around-time, may vary from several
minutes to several days. Such long intervals are most frustrating to a user
during the program preparation and debugging stages. A minor error of an
incorrect punctuation mark in a program can cause a delay of hours or days.
Once the grammatical errors are removed, it still requires many successive runs
to remove logical errors., These consecutive runs cannot be hastened because the
second run depends on the first, the third depends on the second, and so on.
That made the debugging stage the most tedious and frustrating part of the
program development.

Thus the early work in time-sharing research was motivated by correcting
the tedious and frustrating process of debugging in the batch mode of operation.
The reasoning that led to time-sharing was that the human responses and the
output device responses are very slow in comparison to the logic and computing
speeds of the computer; hence, it may be possible to switch the computer from
one user to another and still seem to maintain a continuity at each user's
station.

In the time-sharing mode of operation, a computer will service the Jjobs
entered at remote terminals by sequentially giving a short period of time,
called a time slice, to each job., Once that time slice is exhausted, that
particular job is returned to the end of the gqueue to wait for another turn. 1In
the meantime, a monitor program will perform the necessary bookkeeping and
housekeeping tasks so that when that job receives a time slice again from the
computer, the execution will pick up where it was left off.

From early 1960's when the time-sharing system concept was first
developed, this mode of operation for a computer became widely accepted as an
augmental mode of operation. However, before very long, it became quickly
apparent that the major benefit is not the reduction of programmer frustration,
but an entirely new dimension of problem-solving not possible before, utilizing
a high degree of interaction between man and machine as a team. The language
processors and programs may then be so designed that during the execution of a
program, not only can error messages be sent to the user to aid his debugging,
but also the user is able to modify his problem solving tactics and procedure as
he sees the partial results along the way. It is possible then to design
programs subject to modification by the user during execution time to adapt
themselves to the condition of the problem.

Figure 1.1 shows a typical time-sharing computing system hardware
organization. The configuration consists of a computer located at the Computer
Center and the communication control, transmission and receiving equipment to
connect the computer with the users at the remote terminals. The
data line multiplexer and controller is used to control and direct the schedule
of time-sharing activities. At the user's terminals, each terminal is connected
to a data set or modem (modulator-demodulator) that converts the output signals
from ~the terminal into a form suitable for transmission by the communication
channel. The communication channels are usually commercial telephone networks,
although in many cases telegraph lines and microwave channels are also used.
The data set or modem at the receiving end re-converts the transmitted signals
back to a form suitable for processing by the computer circuits.

It is also of interest to note that the remoteness of remote terminals 1is
only limited by the quality and the economy of the communication equipment. At
the present level of communication technology, it is commercially practical for

Time~-Sharing System

uoy4eunbyjuony suempaeq woysAs Bujaeys-ew)] (eo(dAL ¥ [} oJnby4

s|eujwJo) swepow

Jeiue) gagindwo) B 4B S8)i]1oed

Nl

L

s|euueyd
Uo | 182 | UNWWOD

T R I
| ro T T 1
_ A Jowsp __
| | |]
Josseosoud; | sossadoud M_
| 0/1 /1
| .
901A8p | ||OJ4UOD __
H dens | dewms u
swepou “]O14LUOD syjun
| AS1p ss1p | ||
Dlt i 3 I
~
D|! | o [0J1Uod sytun | ||
¥ITIOMINGD | | @ odey sdey |
| : ||
[}
Ny | bossaooua - !
* Jepead | ”_
WAL | , - .
W | WHINID _‘
NI V1vVa | $——Je4urad | | |
N |
M | _
LJ o |OJLUod syiun *_
%HHWIl! L odey adey “
S |
hu seoiasq |eJoydided *_

4 CHAPTER 1 INTRODUCTION

a large, centralized computer to serve on demand users scattered over a wide
area over the world, Thus through the time~sharing use of computer, an entirely
new "utility” has emerged, just like electricity, gas, or water, to provide the
users with the computer services when independent ownership of these services
may be out of reach economically to these users.

1.2 Time-Sharing System at Pitt

University of Pittsburgh is one of early pioneers in the development of
time-sharing computer system. Through a federal grant in 1965, the time-sharing
facilities for the University community were established, using an IBM 360/50
system. Much of the software supporting facilities was developed in the
subsequent years, resulting in a system then known collectively as the Pitt
Time~-Sharing System, or the PISS.

In 1971, the time-sharing computer at the Pitt Computer Center was
changed to a multiple PDP-10 system of Digital Equipment Corporation. This
system has been upgraded and expanded several times, and the present
configuration is a dual DEC-1099 system. Figure 1.2 shows the configuration of
the system.

As in many similar enviromments, the current software system is a
combination of vendor-supplied software and self-developed facilities. The
readers are referred to the list of references at the end of this chapter for
details of language processors and other software subsystems.

The software system of the time-sharing system contains, in addition to
the language processors, a group of service routines. The most important one
for the time-sharing operation is the executive system, also called a supervisor
or a monitor. It is a master program which exercises an overall control on the
time-sharing activities. It performs the scheduling of users from the queue,
provides users with proper language processor and peripheral facilities as
requested by the users, keeps an account of charges, and provides a variety of
service functions.

Because of the control it exercises, the monitor is the highest~ranking
program in the software system. The monitor controlls and dispatches a group of
processors, collectively called the CUSP (Commonly Used System Programs), among
which are the language processors such as BASIC and FORTRAN, In turn, under the
control of each CUSP is a subgroup of routines for the execution and/or
interpreting of the instruction set of the CUSP. Thus the software system has a
distinct hierarchy structure, and this is shown in Figure 1.3.

There are several points regarding the software system structure worthy
of note:

(1) There are three levels of hierarchy: the monitor level, the CUSP
level, and the sub-CUSP level. The monitor level is the highest.

(2) It is a common practice in a time-sharing system for the computer to
supply a prompting symbol through the user's terminal to indicate that the
computer is ready to accept a command or input data. In the time-sharing system
of DEC-10 system, different hierarchies use different types of prompt symbols:

Time-Sharing at Pitt

“ed ‘ybingsiaztgd ‘yBmgsiiid Jo AITsIaATun ‘4 19qus) 193nduo)
9 souaisgysy ‘uotrssiwiad Ag pajutadew

(0d) 0T-dad © ST 2Tun burssenoid [ei1uad yoded)
331d e weIsSAS 660T-DHA ©® JO uolleanbiyuc) z* ambrg

¥961 AWVNNYI JO S¥ NOILYHNDIANOD

(SWILSAS HLOE WOYJ 319ISSIO0V)

AHOW3W FHOD 40
SQHOM HZLs

AHOW3W 3H0D 10
SAQYOM NOITTIW L

$3AIHA 3dvL
OIL3NDYW
HOVHL-3NIN ¢

IDVHOLS SS3I00V

WOGQNYY 40 SILAG

NOIMUE ¥6'Z HlM
S3IAIEQ MSIT 01

$3AIHA 3dv1 030 v

LINN ONISSIOOH
IvHINID

DONILNWOD FALLYHLISININGY 1TV

O WN3LSAS

IOVYHOLS $SI0OV WOONVYH JO S31A8E
NOITT18 S¥0 9 HLIM S3AIHA NSIQ 22

(SW3LSAS H108 WOH4 T18ISSIO0V)
JAIHA IAVL DI1INDYIN HOVHL-NIAIS L
SAAIEA AdVL DILINDVIW MOVHL-3ININ 8

AHOW3W 3400 30
SQHOM NOITTIN |

S3IAIEQ 3avL 030 P

LINO ONISSIO0Hd
AVHINID
AdvYWIHd

LINN ONISSIDOHd
AYHINID
AHYAONQO3S

LINN ONISS300Hd
IYHLINID
AHVANOO3S

LINM HONISS300Hd
AYHINID
AQVYINIHd

ONILAdWOD HOHYIS3H ANV DIN3AYOY 1TV

g% VYV SNILSAS
s, 0L waisAsd3q S.111d

6 CHAPTER 1 INTRODUCTION

> Sub-CUSP level

—{s0]

* CUSP lavel .
—— $CHANGE
UPDATE 1 $TYPE
—| $DELETE |
etc
FORTRAN
MONITOR BASIC
N —— -
MONITOR jevel PIP
SORT
etc

CUSP = Commonly Used System Programs

Figure 1.3 A Typical Time~Sharing Software System Organization

Prompt

Symbols Explanations Hierarchy Ievel
. A period Monitor level
* An asterisk CUSP level
>> Double ">" signs
> Greater~than sign Sub-CUSP level
? Question mark

(3) When such a prompt symbol appears on the user's terminal, the
computer is ready for a command or information, and the user must type in a
command or data and terminate the typing with a carriage return. However, when

Computer Service 7

a program contains a number of such command/input breakpoints, it becomes
difficult for the user to keep track exactly what command/input is expected at
each breakpoint. It is therefore necessary for the program to be designed so
that a statement of instruction or prompting message is printed on the terminal
at each breakpoint in order to guide the user. The following shows a typical
example: (user's typing in italics)

Explanation
~— - A prompting statement

ENTER OPTION NUMBER BELOW: ——
>389 2

NO SUCH OPTION, TRY AGAIN!
ENTER OPTION NUMBER BELOW:

Convention used in this book:

Text in italics = user's typing

>33 .
2 = carriage return
E???R NUMBER OF VARIABLES: Other text = computer printout

Thus, the combination of the prompting statement, the prompting symbol and - the
user's response constitutes a man-machine interaction, and is referred to as a
man-machine dialogue. Programs using extensive dialogues to guide the users are
called conversational programs.

(4) It is not possible to transfer directly from one CUSP-level language
processor to another without first returning to the monitor. This transfer can
be made conveniently by providing a special control key on the remote terminal
keyboard. See Section 1.6 for the function of various keys on the keyboard.

1.3 Computer Service

The computing facilities in an academic institution are generally
provided to serve a combination of instruction, research and administration
functions. When the facilties are shared by different users for different
functions, it 1is necessary to establish rules and regulations so that the
resources may be most efficiently and equitably utilized. While it is outside
the scope of this book to enumerate these rules and regulations, it is important
for every user to be familiar with them. These include such matters as
application procedures, allocation of computing time and resources, restrictions
placed on the computing services, fiscal arrangements, ethical and legal
stipulations regarding security, propriety and relevance of work using the
computing resources, and policy on computer abuses.

Application procedures are generally defined by the Computer Center to
determine the eligibility and extent of computer usage of an applicant. The
application requires certain pertinent facts and the usual authorizing
signatures. Readers are referred to their respective Computer Centers for
current procedural details.

When an application is accepted, the applicant 1is assigned a pair of
identifying numbers:

[m,n]
where m = a 6-digit (octal) project number, and
n = a 6-digit (octal) programmer (user) number.

The combination of these two numbers, referred to as the project-programmer
numbers, is often abbreviated either as PPN or as P,PN. Note that a PPN is
usually enclosed in a pair of square brackets.

8 CHAPTER 1 INTRODUCTION

REMOTE TERMINALS

1.4 Communication with the Computer

A remote terminal is used as an input or output device at the control of
the user. Generally, it is a typewriter—like device with a keyboard, a typing
or displaying element, and the interface between the user and the system. The
performance of the remote terminals depends to a large extent upon the
communication linkage between the terminals and the computer. Hence, some of
the basic concepts and terminology will be described here to aid the
understanding of a time-sharing terminal.

(1) Transmission line

Depending on the modes of information transmission, the transmission
lines, also called channels, are classified as simplex, half-duplex, and
full-duplex. -A simplex channel can transmit information in one direction only.
A half-duplex channel can transmit information in either direction, but only in
one direction at a time. A full-duplex channel can transmit information in both
directions at the same time.

Depending on the physical connections, transmission lines may be
classified as dedicated, shared, hard-wired or dial-up lines. A dedicated line
or channel is one assigned for the exclusive use of the terminal. A shared line
is one assigned to the use of several terminals. A hard-wired line connects
physically from the terminal to the system. A dial-up line is a shared line
using the commercial dial telephone network for connection.

(2) Information code

Information to be transferred externally between a terminal and a
computer on the transmission line is represented by character sets consisting of
alphabetic characters, both upper and lower cases, numeric characters,
punctuation marks and special characters. In addition, signals representing
control action of transmission and processing are coded into "control
characters". These information characters and control characters may be coded
into a series of binary digits (called bits) so that information may be
transmitted and processed by the computer and the terminals. Several systems of
codes are in use. The code format used in most U.S.-made non-IBM machines,
including the systems at Pitt, is the ASCII* code, which encodes 128 characters
into 7 binary digits. Table 1.1 shows the ASCII code assigmment of characters,
where the code assigrments are given in octal numbers, For example, the upper
case letter "A" is coded as octal 101, or actually as 7-bit binary
representation of 1000001.

Note that the character set shown in Table 1.1 is the ASCII
information-character set, which is a subset of the complete ASCII code of 128
characters. The 32 characters not shown in Table 1.1 are all control
characters. With ASCII code, the words PITT and Pitt are then transmitted
respectively as:

10100000 1301001 1010100 1010100 (PITT)
10100000 1101001 1110100 1110100 (Pitt)

*Acronym for American Standard Code for Information Interchange, usually
pronunced as "AS-KEY".

Remote Terminals

ASC | | ASCI | ASCIi

Character 7-Bit Character 7-Bit Character 7-Bit
Space 040 @ 100 ' 140
! 041 A 101 a 141
" 042 B 102 b 142
043 C 103 c 143
$ 044 D 104 d 144
% 045 E 105 e 145
& 046 F 106 f 146
! 047 G 107 g 147
(050 H 110 h 150
) 051 | 111 I 151
* 052 J 112 J 152
+ 053 K 113 Kk 153
, 054 L 114 | 154
- 055 M 115 m 155
. 056 N 116 n 156
/ 057 0 117 o) 157
0 060 P 120 p 160.
1 061 Q 121 q 161
2 062 R 122 r 162
3 063 S 123 S 163
4 064 T 124 + 164
5 065 U 125 u 165
6 066 v 126 Y 166
7 067 W 127 W 167
8 070 X 130 X 170
9 o7 Y 139 y 171
: 072 Z 132 z 172
; 073 C 133 { 173
§ 074 N 134 l 174
= 075] 135 } 175
T 076 4 136 g 176
? 077 < 137 Delete 177

The code asslgnments of octal numbers from 000 to 037
are for control characters, and are normally of no concern
to an average user. However, certain control characters
pertain to printer control, and It will be useful to know
thelr code assignments. These are:

Line Feed 012 Form Feed 014
Vertical Tab 013 Carrlage Return 015
Horizontal Tab 021

Table 1.1 ASCI | Character Set
All numbers in octal codes.

10 CHAPTER 1 INTRODUCTION

In an actual transmission, each ASCII-coded character 1is packed together
with additional bits that perform functions of synchronization (START and STOP
of each character), error-checking (parity bit), and filler or dummy bit (to
allow slower mechanical components to catch up with electrical and electronic
components) . The result is either an 11-bit group (for low-speed transmission)
or a 10-bit group (for higher speed transmission) for each character
transmitted.

Not all computers made in U.S. use the ASCII code. The 1IBM computers,
such as System/360 and System/370 machines use a code system called EBCDIC
(Extended Binary Coded Decimal Interchange Code) to adapt to its byte-structure
(T byte=8 bits). Hence, output media, such as magnetic tapes, are not
compatible between ASCII-code machines and EBCDIC~coded machines without first
going through a code conversion process. Because of wide-spread use of both
code systems, such a code conversion routine is a part of standard service
routines available at the Computer Center. For the same reason, a remote
terminal wired to accept the EBCDIC code cannot be used in the DEC-10 system
unless it is re-wired or it has a switchable option of code selection.

While the ASCII code has been adopted as the American standard for
peripheral communication, it has shortcomings in certain particular
applications. For example, the internal representation of a FORTRAN variable
would be very awkward in a machine such as the DEC-10 with a 36-bit memory word
format. Since the standard FORTRAN defines a variable name to contain one to
six characters, an ASCII-coded six-character FORTRAN variable name will require
42 bits or 2 memory words for its storage, a rather inefficient usage. As seen
in the Table 1.1, if we forego the difference between the upper and the lower
cases of alphabetic characters, we can omit the right-hand column in that table.
This would reduce the character set to only 64 characters. Since each of the
64-character set may be uniquely defined by a coding scheme of six binary
digits, this results in a sixbit Code. With each character code only six bits
long, a six-character FORTRAN variable name can now fit snugly into a single
36-bit word. In this coding system, any lower case alphabetic character, when
encountered, will be automatically coded as its upper case equivalent. The code
assigmment of each character in the Sixbit Code will not be tabulated here, but
will be given later in Chapter 3 (FORTRAN-10) where its reference will be more
relevant. The derivation of the Sixbit Code of a character from the 7-bit ASCII
code may be obtained simply by dropping the second bit (counting from the left).
For example, the letter "A" is coded as 1000001 in ASCII code, and is 100001 in
Sixbit. Alternately, the Sixbit Code can be "computed” from the ASCII code by
either of the following algorithm:

(SIXBIT) = (ASCII) - 040 in octal arithmetic
(SIXBIT) = (ASCII) + 040 in octal arithmetic

and then retain the two least significant octal digits.

Thus, the letter "A" is coded as octal 101 in ASCII, and as octal 41 in
Sixbit.

DECwriter 11

(3) Speed of transmission

The speed of transmission of the signal is measured by the rate of
transmission in signals per second, expressed in bauds*. In binary
transmission, each signal contains one bit of information, and consequently the
speed of signal transmission is numerically the same as the speed of information
transmission., Thus a 300-baud line will transmit information at a rate of 300
bits/second. However, in polyphase modulation, each of the four predetermined
phase-shifts represents two bits of information, and a 300-baud line will
transmit information at a rate of 600 bits/second. Capability of commercial
transmission services, such as telephone or telegraph lines, ranges from 100 to
several hundred thousand bauds. The maximum capability of a "voice grade"
dial-up telephone line is about 2000 bauds.

In a time-sharing system, information transfer may be initiated or
terminated at the terminal. The ASCII coded 7-bit signals arriving at or
departing from a terminal are packed with additional bits to perform functions
of synchronization and parity error checking. The result is an 11-bit group for
each ASCII character for 110-baud transmission, or a 10-bit group for 150 or 300
baud rate transmission. These transmission speeds are used to match the
terminal output speed of 10, 15 or 30 characters/second respectively.

Since the remote terminals generate and receive information at relatively
low speed, the «capability of the transmission line is hardly taxed.
Consequently, various line-sharing techniques are available, one of which
involves the use of a concentrator. A concentrator is usually a minicomputer
which collects information from several terminals in the area at a low speed,
and then packs them and re-transmits. In the reversed direction, a concentrator
receives information and distributes them to different terminals.

1.5 Description of a Remote Terminal, the DEC LA36 DECwriter

For several decades, the most commonly used communication terminals have
been the Automatic Send-Receive Teletypewriter Set (ASR), model 33, 35 or 38.
These are called ASR33, ASR35, and ASR38, and in most cases, simply Teletype ®.
In fact, the standard abbreviation for terminal-like device in a computing
system has been uniformly taken as TTY.

Rapid recent advances in technology have produced new generations of
remote terminals. Relay circuits were replaced by transistorized circuits,
which in turn are being replaced by microprocessors or microprogrammed
controllers with semiconductor memory. Mechanical components are improved so
that they are lighter and move faster. Clumsy typing heads with embossed
characters are replaced with matrix wire impact printing, thermal or
electrostatic non-impact printing. While the technological advances have made
new generations of terminals lighter, faster, less expensive and more reliable,
the basic operating principles procedures remain essentially unchanged, thanks
to the tremendous steadying effect of Teletypes as the industry workhorse over
the last three to four decades. It is therefore possible in the. present
discussion of remote terminals to deal specifically with one particular terminal
and still retain generality of our discussion. It also means that although this
presentation pertains to only one model of terminal, extension of the discussion

*Named after the French inventor of the telegraph code, Jean-Maurice-Emile
Baudot, 1845-1903

® Registered trade mark, TELETYPE Corporation, Skokie, Illinois.

12 CHAPTFR 1 INTRODUCTION

to another make or model would be no problem. This is why we will now
concentrate on one particular terminal, the DEC LA36 DECwriter, for the
subsequent discussion.

A remote terminal contains generally four major parts. They are the
keyboard unit, the printer unit, the print control unit, and the call control
unit. A simplified block diagram, with the important components within each
part, is shown in Figure 1.4. The arrows in the diagram show the direction of
signal flow and/or control when the terminal is connected to a computer. Its
operation can be described briefly in this manner:

When the user strikes a key on the keyboard, say the upper case "A", the
keyboard electronics encodes it into the ASCII code of signal 1000001. These
electric signals are sent to the transmitter unit, in which additional
start-bit, stop-bit, parity-bit and filler-bit (if needed) are added. The
communication electronics in the transmitter transform these signals into
modulated audio tones, which are transmitted serially through the interface to
the computer over a transmission line. At the computer end, a buffer (or
temporary) memory accepts the character after checking over any transmission
error, repacks the character with start-, stop-, parity- and filler-bits, and
re-transmits back to the terminal. When it reaches the terminal, the receiver
demodulates the signals by removing the audio carrier, checks for any
transmission error, and deposits the 7-bit ASCII code of "A" in the buffer
memory.

When the printer unit is ready to accept a

l H character, controlled by the printer control unit,
H the ASCII code inputs are sent to the character
® o generator ROM (Read Only Memory, a semiconductor

memory chip) which produces seven one—Or-—zero
signals simultaneously 7 consecutive times. Each
7-signal group, after amplification, selectively
actuates by solenoids vertically arranged wires to
strike an inked ribbon, leaving a vertical column of
selectively placed dots in that column.

e ew

C
.
o

This is repeated seven times, each time with the print head moving
slightly to the right, and each time producing a different vertical pattern.
The result is shown here. This is called a 7x7 dot matrix print.

It is interesting to note that the signals generated at the keyboard take
a circuitous route before finally printed on the terminal printer. In fact,
what is printed is actually what the computer thought the user has typed. This
is a clever way of involving the user as a part of error-checking system, and is
a standard feature in time-sharing system called echo print.

The individual parts of the DECwriter will now be described next:

(1) Print unit

The print unit is the receiving component of the terminal. It consists
of seven vertically arranged print wires actuated by seven solenoids, which in

turn are controlled by the character generator ROM as explained before., Other
useful information about the print unit are as follows:

DECwriter

fFrom } To
Computer Computer
Call Communication Interface
Control
Unit ¥ |
Receiver Transmitter
Ji .
Print Buffer Print
Control > Memor Control
Logic b4 Unit
T
-
L A
Character|{. Keyboard
Generator Encoder
Pri?t . Keyboard
Unit Unit
Printer Keyboard

Figure 1.4 Block Diagram of a Typical Remote Terminal

13

ERBHRRARRDNEBSE

[| 1 | A I [R e

AERIAE DRI e
o] [E MBI b

Figure 1.5 Standard ANSI Keyboard Layout

14 CHAPTER 1 INTRODUCTION

Paper size: 3" minimum, 14" maximum width
Print field: 132 characters maximum
Print spacing: 10 character/inch horizontal,

6 lines/inch vertical spacings
Print characters: 96 upper/lower case ASCII

7x7 dot matrix (0.07x0.10 inch)
Print speeds: switch selectable at 10, 15 or 30

characters/second with 60 char/sec
catch-up mode*

(2) Print control unit

The print control unit contains a buffer memory that accepts ASCII
character codes received and a control logic unit which is a microprogrammed
controller. Under the control of the microprogram, characters in the buffer are
presented to the character generator on a first-in/first-out basis. The
microprogram activates the carriage servo system and the print head system to
control the mechanical movements. It also detects signals and actuates
mechanisms such as line feed to advance the paper, ringing the bell for an
error, etc.

(3) Call control unit

The call control unit consists of an asynchronous receiver~transmitter
and a communication interface. It initiates, accepts, controls and completes
the incoming and outgoing transmission of information.

(4) Keyboard

The keyboard is the information-sending component of the terminal. The
mechanical linkages and electrical contacts translate the key action into a
group of electrical signals. The arrangement of keys on the keyboard resembles
that of a conventional typewriter with additional special features. These are
discussed in a later section in this chapter.

Those terminals called ASR's (Butomatic Send-Receive Sets) contain, in
addition to the four units mentioned above, one of the following auxiliary
input/output units: paper tape reader/punch, or tape cassette player/recorder,
or floppy disk with read/write electronics. These serve as storage media for
the terminal.

There are several switches placed adjacent to the keyboard which allow a
user to power-up, select the transmission rate, and choose on-line or local
operation. In local operation, a terminal will function as a typewriter,
allowing a user to add information to the printout. It also permits maintenance
work and testing of a terminal without disturbing the computer. For ASR-type
terminal with either paper tape, digital cassette or floppy disk, the LOCAL
position permits the ASR to be used as an off-line input/output device for such
task as preparing, editing, reproducing and printing paper tapes, cassette
tapes, or floppy disks.

*While the time-consuming action of carriage return, tab or line feed is taking
place, characters received are stored in the buffer. When mechanical action is
finished, characters in the buffer will empty into the printer unit at 60
char/sec catch-up speed.

Keyboard 15

1.6 The Keyboard

The keyboard arrangement of the DECwriter follows the ANSI (American
National Standard Institute) standard. It has a format very similar to the
conventional typewriter. Figure 1.5 shows a keyboard of the DECwriter.

(1) Alphabetic characters

Key positions of alphabetic characters are identical to those on a
conventional typewriter. Both upper and lower cases are available. However,
transmission of alphabetic characters are generally done in upper cases, unless
specifically commanded to transmit as lower cases. Thus, pressing an alphabetic
key without the shift key will transmit and print an upper case letter.

(2) Numeric and special characters

The character set on the DECwriter keyboard consists of the following:

Alphabetic: ABCDEFGHIJKLM
NOPQRSTUVWXYZ

Numer ic: 0123456789

Special: +=-*/()=" $% '@\

o201 <>y
(The underscore symbol _is replaced with the left
arrow symbol <« on certain keyboards.)

(3) Control keys

Certain special keys perform control functions:

a. LINE FEED This key will cause the terminal paper to
advance one line. When the terminal is operated on LOCAL, the
carriage return does not automatically advance the paper, and the
LINE FEED key must be pressed to do it.

b. RETURN This key will return the print head and
carriage. When the terminal is on line, returning the carriage
return signifies the end of a unit of information, for example, an
instruction to the computer. The computer will automatically
respond with a line-feed control signal to advance the paper.

c. DELETE This key permits the correction of typing
errors on a line if the carriage has not yet been returned. This
key is marked as RUBOUT on some older keyboards. When the DELETE
key is pressed successively for n number of times, the last n
characters typed (including spaces) will be deleted. As a signal to
the user which characters are being deleted, the terminal will print
out the deleted character each time the DELETE key is pressed.
Also, before the first deleted character and after the last deleted
character, a back slash "\" is printed. Thus the pair of back
slashes serves as delimiters bracketing the string of deleted
characters.

16

CHAPTER 1 INTRODUCTION

For example, if the following has been typed on the terminal:

FOUR SCORE AND SEVIN YE

Carriage position when mis-spelling
in SEVIN is discoverd.

In order to delete the five character "IN YE", five successive
DELETEs are required. Notice that a space or blank is also
considered a character., To correct the typing, the user will DELETE
five times and then retype the corrections. On the printout at the
terminal, it will appear like this:

FOUR SCORE AND SEVIN YE\EY NI\EN YEARS AGO, OUR FATHERS ,..

First DELETE —————————ir printout when resume typing
Second DELETE
Third DELETE

Fourth DELETE
Fifth DELETE

L

As shown in the example, a pair of back slashes brackets the deleted
characters printed in the order of deletion (from right to left).

REPEAT This key, when operated together with another
character key, will cause a repetition of that character to be
printed (for LOCAL operation), or a repetion of that character to be
transmitted and echo-printed (for on-line operation). For example,
when the REPEAT and K keys are pressed down together, a string of
K's will be sent and printed as long as both keys are held down.

SHIFT, SHIFT LOCK These keys have identical functions as those on
a conventional typewriter, and will cause the upper case character
marked on the key to be printed or transmitted.

ESC This key, appearing on older keyboards as an
AIMODE key, directs the computer to treat the next received
character as a command. The precise meaning of the ESC-character
combination is defined by the software system employing this
function.

BACK SPACE Depending on the software processor used at the
time, the back space key either makes the last character sent to the
computer available for deletion or correction, or makes it possible
to overprint with a different character such as underscoring a
certain text string.

TAB This key will direct the computer to advance
the print head to the next tab stop.

BREAK Used for half-duplex transmission mode to
interrupt reception of data from the computer. Ignored in ordinary
full-duplex mode.

Control Characters 17

(4) Control characters

The key CTRL, when used together with an alphabetic character key,
generates a code combination for control purposes. Such a combination of CTRL
and alphabetic keys does not have any printing function, and therefore the
computer will return an echo signal printed out on the user's terminal to inform
him of the nature of the control function. The echo print has a format of """
(a circumflex) or "T" (an up arrow) followed by the character used, such as “C
or TC. These control characters will appear in this book frequently, and they
will be referred to in several ways. For example, the control character C will
be referred to as:

CONTROL~C
gTRL—C
or, Cc (or, +C)

Although there are 26 control characters, a beginning user need only be familiar
with a few of them, and they are “C, "0, "U, "I, "L, and "R. Several other
control characters, such as S and "Q, will be explained at appropriate places
where they are used.

a. CIRL-C ("Q) The “C key interrupts the program and returns
the control to the system monitor. If a program execution is in
progress, apply “C twice or more to interrupt it. The first °C
stops the execution of the program, and the second one (and the
succeeding ones) returns control to the system monitor. When the
system monitor obtains the control, a prompt symbol (a period) is
printed on the terminal, and the system awaits for a monitor
command .

b. CTRL~O ("0) The "0 key suppresses the terminal output
without interrupting the execution of a program. For example, when
debugging a program, if you only want to see whether a program
execution reaches the end, you can suppress all or specific parts of
the put in order to avoid time-consuming printing of the results.
Thus any time when output begins to appear, applying CTRL-O will
suppress the remaining portion of that output.

c. CIRL-U ("U) The “U key, applied at the end of one 1line of
typing, will instruct the computer to ignore the entire line and
therefore to perform the function of deleting that line. The system
will respond with a carriage return and a linefeed, but no prompt

symbol.
d. CTRL-I (°I) Terminal will tab to a pre-set column,
e. CIRL-R ("R) Terminal will re-type the current line.
f. CTRL-L (L) This control character tells the computer to

advance the paper to a new page. On a DECwriter terminal, it will
advance the paper only 8 lines.

The keys for these functions are summarized in Table 1.2.

18 CHAPTER 1 INTRODUCTTON

Echo Print

Special Key 1f any Function
‘LINE FEED Move paper up one line.
RETURN Return the carriage.
DELETE (or RUBOUT) /X Delete character Immediately before.
REPEAT Repeat a character or a function.
CTRL-C “C Return to monitor mode.
CTRL-0 ~0 Suppress current terminal output.
CTRL-U “u Ignore the current line Input.
CTRL-I Tab to a preset column.
CTRL-R _ Retype the current line.
CTRL-L Advance paper on ferminal 8 lines.

Table 1.2 Function of Selected Special Keys

1.7 Other Types of Remote Terminals

The DECwriter terminal as described in the previous section is a
keyboard printer terminal. The majority of remote terminals used in a
time-sharing system are of this type. A variation of this. type is the portable
terminal, which incorporates in a single carrying case an acoustic coupler (for
connecting the terminal to the computer by a telephone set), a keyboard, a
printer and associated electronics. One ingenious product includes an acoustic
coupler, a keyboard, and associated electronics, but no printer. It makes use
of a conventional television set, and when combined, it becomes a time-sharing
terminal.

As a result of rapid advances in MOS/LSI (metal oxide semiconductor and
large-scale integrated circuits) technology, the size, weight and cost of
electronic components and systems have been greatly reduced. These advances
have caused rapid developement of other types of terminals, and they are briefly
discussued next:

(1) Cathode ray tube (CRT) terminal

The convenience of a keyboard operating terminal is greatly enhanced if
we use a cathode ray tube (CRT) terminal for the purpose of communication with
the computer, preparation of programs and debugging. This is particularly
useful if the user has an alternate means of producing hard copy as records.

Other Types of Terminals 19

A typical CRT terminal, also called a scope terminal, displays a subset
of ASCII characters (such as upper
cases of alphabet plus symbols).
The display unit is similar to

| that used in an oscilloscope or

From c television set. Other than the

Computer omputer . . .

~ display unit and its control
memory, it has the same
organization as a keyboard printer

Cg:‘t:o‘ Communication Interface terminal. Figure 1.6 shows a

Unit ¥ [block diagram of a typical CRT

terminal. If we compare this with

Figure 1.4, we can see the obvious

resemblance.

X

Receiver Transmitter

bisplay fof resh _The CRT produces an image
Control erreshi ! control by directing an electron beam
Logic Hemory I } it against a phosphor—-coated screen
which emits 1light when struck by
electrons, The control on the
Character Keyhoard beam intensity can turn the beam
Generator Ericoder completely off, thus allowing no
CRT : Keyboard €lectrons to strike the screen, a
Unit Unit process called blanking.

Keyboard Positioning the beam in a CRT
terminal is usually done by the

raster _scan method. The beam is
first positioned at the upper left
corner of the screen; it then
moves across the tube face,
Figure 1.6 Block diagram of A producing a straight 1line. The
' CRT Terminal beam is blanked while returning to
the left at a 1level one line

lower. The blanking is turned
off, and a second line is traced. This is the same method used in a commercial
television set that scans 525 lines/frame and at a rate of 1/30 second per
frame. Forming characters on screen is very similar to the dot matrix print of
a keyboard printer terminal. The scan scheme will position the rectangular area
within which the character is displayed. The character, through. a character
gegerator ROM (read-only-memory), formulates a b5x7 dot matrix, with dots
emitting light when the electron beam strikes the tube phosphor. Typically, the
light-emitting period is very brief, ranging from microsecond to millisecond
range. Therefore, a CRT using the scan method requires a refresh memory that
stores the display and re-display at a refresh rate large enough to provide a

constant intensity image and to eliminate flicker in the image.

Most CRT terminals are also teletype-compatible, and they are often
interchangeable with keyboard printer type terminals. With no carriage, a CRT
terminal is provided with a cursor, which may blink on and off to indicate the
current position of the beam. The associated cursor control enables the user to
move the cursor up, down, left or right, or to erase the screen. Unlike the
teletype, data rolling off the top of a CRT screen are lost to the user. The
operations of a CRT terminal and a keyboard printer terminal are very similar.
A person familiar with the operation of a keyboard printer terminal should have
no problem with CRT terminal operation.

(2) Graphics terminal

This is a terminal which maintains the capability of displaying not only
characters, but also arbitrary figures. All of the man-machine interaction

20 CHAPTER 1 INTRODUCTION

previously described are retained, and the interaction is expanded to include
the clarity of graphics.

When a graphics terminal displays characters, it emulates a CRT terminal,
and outwardly it operates just like a CRT terminal. When a graphics terminal
operates in the graphics mode, it provides both control of beam position and
blanking. In the position control, the beam is deflected from a current
position to another. If the blanking is on, only two end points are shown on
the screen. If the blanking is off and if the terminal is equipped with a
"linear interpolation vector generator," the electron beam will trace a straight
line. Repeated programmed positionings of the beam, with blanking on or off as
required, will produce a line drawing.

Graphics terminals normally utilize a cathode ray tube display, but some
low cost units use a storage tube to retain the data which does not require a
refresh memory. The disadvantage of the storage graphics display is that
dynamic display and removing graphic information are not possible: any
subtractive change of displayed data requires first an erasure of the entire
image, and then a reconstruction of a new image, an event that will take at
least half a second, Thus a storage tube may display at a maximum rate of about
2 frames per second, not a satisfactory speed to depict motion. On the other
hand, graphics terminal using refresh memory imposes a heavy burden of memory
and software support for its image generation and constant refresh. The heavy
requirements of memory and software usually call for a minicomputer to provide
the support.

(3) Intelligent terminal

For years, manufacturers have been offering terminal systems with fixed
functional capability. For example, a terminal designed to be compatible with
the IBM systems, which use a different character coding system (EBCDIC Code), is
not compatible to a system using the ASCII code unless extensive re-wiring is
done.

The rapid recent advances in MOS/LSI technology have now made it possible
to incorporate microprocessors and memories, which greatly expand the
flexibility and capability of a terminal. Instead of a simple function of
transmitting and receiving data or programs, a terminal may now have additional
processing power. Acquiring such additional processing power within the
terminal is referred to as "making the terminal more intelligent", and therefore
the name "intelligent terminal." Quite predictably, a terminal without
additional built-in intelligence is called a "dumb terminal.”

Intelligence in a terminal may take on many forms. It ranges from the
simple ability of changing operating characteristics of the terminal to the
power of a full-scale microcomputer. Intelligent terminals therefore are able
to emulate many different communication line procedures and codes, so that a
terminal may be coded to adjust to an existing line protocol and procedure. For
many other various functions, the terminal may be tailored to suit the need of
the particular user or industry segment by providing specific software for the
intelligent terminal. For example, an editing program may be installed in the
intelligent terminal so that the terminal becomes a word-processing machine.
Word-processing tasks may then be carried out without loading down the central
computer. Another example is an intelligent graphics terminal where the
graphics are processed by a built-in graphic processor in the terminal. Again,
in this way, the central computer will not be loaded down with detailed chores.

The main disadvantage of an intelligent terminal, at the time when the
third edition of this book is being prepared, is its cost, although the gap is
rapidly narrowing. In applications where only simple functions are required,

To Sign On 21

dumb terminals are more cost effective, In time, the difference in cost will
become insignificant, and the intelligence of the intelligent terminal will be
greatly expanded. The experiences of the hand calculator industry can very well
be repeated in the remote terminal industry within the next decade. At the
present time, the applications have been limited to such areas as point—of-sale
credit authorization, bank teller systems, Stock brokerages, airline reservation
systems, hospital admissions, etc., where distributed data processing is highly
desirable.

1.8 8ign-On at the Remote Terminal

Once a user has a valid pair of ID numbers (the PPN) and has a valid
password, he may now sign on at any remote terminal by following the procedure
outlined below:

Hard-Wired Units Dial-Up Units
(1) Turn on switches. Press C if (1) Turn on switches and dial the
there is no prompt symbol ".". computer number.* If the line
After the prompt "." appears, is busy, there is a usual busy
type "I" (for INITIATE) and signal. When the call gets
the following lines will be through, a high-pitch tone can
typed out on the terminal: be heard. Place the phone set

on the seat of the acoustic
coupler. Wait until the READY
or CARRIER light comes on,
type C, and the following two
lines will be typed out on the
terminal:

PITT DEC-1099/A 63A.41B 15:36:41 TTY43 system 1237/1240
PLEASE LOGIN OR ATTACH

where "1099/A" indicates System A, "63A.41B" the monitor version, "15:36:41" the
time of the day in 24-hour clock, "TTY43" the line number assigned. If "1099/B"
appears instead of "1099/A", it means the user is in touch with System B, If
the user finds himself in a wrong system, he requests a change by typing:

TTY SYSTEM B or TTY SYSTEM A

after the prompt symbol.

(2) Type the monitor command after the prompt symbol:

IOGIN m,n)}

or IOGIN m/n

where m = project number, n = programmer number,
2/ = carriage return.

The difference between "m,n" and "m/n" in the two monitor commands is that the
latter form will suppress the message of the day from the Computer Center when
the sign-on procedure is completed. It is possible that you have seen the
message several times already, and may not care to read it another time.

*For University of Pittsburgh users, dial (412) 621-5954.

22 CHAPTER 1 INTRODUCTION

The carriage return is a standard control signal to indicate to the
computer the termination of a line, a command or a message. To avoid cluttering
the text and to relieve the typing problem, the carriage return symbol " " will
be used only in Chapter 1. For the remainder of the book, the readers should
assume that there is always a carriage return at the end of every line.

(3) Enter the password when requested. The password will be entered in a
non-print mode, and the typed password will not appear on the terminal, This is
to maintain the security of the password.

If the entered password is an incorrect or invalid one, the system will
respond with an error message and a request for the PPN. After supplying the
PPN again, another password request will be made by the computer. The user has
five chances to sign on correctly. After that number of unsuccessful trials,
the job is killed, and the user must restart the entire procedure to sign on.

If the password is found to be valid, the system will respond with
information on the status of the project, the last sign-on time and date, the
time of day, and the "message of the day" from the Computer Center. The last
item may be suppressed if the user uses the LOGIN command with the m/n
specification.

After all preliminary reports are finished, a prompt symbol "." is
printed on a new line, and the computer pauses and waits for input. The user is
now connected to the computer at the monitor level, and the sign-on procedure is
completed.

The following two cases are examples of sign-on., Explanatory remarks are
also given along with the remote terminal printout. As used throughout this
book, those lines entered by the users will be in Ztalics:

Printout on Terminal Remarks
JINITTIATE) IMITIATE command
PITT DEC-1099/A 63A.41B 16:19:17 TTY43 system 1237/1240 Computer's response
.TTY SYSTEM B)] Request System B
PITT DEC-1099/B 63A.41B 16:19:50 TTY43 system 1237/1240
.LOGIN 115103,320571 Sign-0On command
JOB 35 PITT DEC-1099/B 63A.431B TTY43 Wed 7-May-80 1619
Password: (Your password) [Supply password
Last login: 7-May—-80 1617
Usage ratio: 22.13 Units used: 33.5 Password valid

SYS B DOWN 0000-0800 MON MAY 12 FOR REGULAR HARDWARE MAINTENANCE

SYS B DOWN 0000-0300 TUE MAY 13 FOR REGULAR SOFTWARE MAINTENANCE

DUE TO HARDWARE PROBLEMS THE ARRAY PROCESSOR WILL BE Message of the day
TEMPORARILY OFF LINE UNTIL FURTHER NOTICE

. System ready!
LLOGIN 115103/320571) Sign-On command
JOB 23 PITT DEC-1099/B 63A.41B TTY43 Wed 7-May-80 1815 ¢ 1\ .11q
Password: (Your password)) password

Last login: 7-May-80 1619
Usage ratio: 22,13 Units used: 33.5

. System ready!

Password 23

1.9 Password

To sign on the DEC-10 system, the required identifications are a valid
PPN and the associated password. Security of PPNs is impossible because they
are publicly displayed in many places - in LOGIN printout, in the file
directory, in printout identification, etc, Thus the only real safeguard and
security of a computer account is the password.

The need for protection against unauthorized use of your account by
another person goes beyond accounting reasons. There have been numerous
incidents of computer vandalism in the past. The most frequent vandalism was
change or erasure of programs or data without the owner's knowledge.

The only protection against such unauthorized use is to install a
password, to keep its security, and to change it frequently. As a matter of
prudence and necessity, the user should change his password regularly as a
standard practice and whenever he suspects the password is no longer secure.

Changing a password at a terminal can only be done at the LOGIN time by
using either of the following LOGIN format:

LOGIN m,n/PASSWORD

or, IOGIN m/n/PASSWORD

where "m" and "n" are the PPN. The following shows a sign—-on session with a
password change. Since the process is interactive, the explanation should be
self-evident:

LOGIN 115103/320571/password J

JOB 16 PITT DEC-1099/B 63A.41B TTY43 Wed 9-May-80 2003
Password: (Enter old password) 2
New Password: (Enter new password) 2

Retype for verification
New Password: (Enter new password again))
Last password update: 24-Apr—80 1255

Last login: 22-Apr—80 1642
Usage ratio: 0.84 Units used: 33.1

1.10 Disk Storage Quota

One of the special features of a time-sharing computing system, as
compared with a computer for batch processing applications only, is its very
large capacity for on-line mass storage, such as the disk storage. It is a
common practice to assign and allocate a part of that mass storage for users to
store their programs, data or other files, These storage spaces are measured in
"disk blocks", or simply "blocks". In DEC-10 system, each block contains 128
data words in DEC-10 format. Therefore, each block can hold a maximum of 640
characters, an equivalent of 8 fully punched cards.

24 CHAPTER 1 INTRODUCTION

Each authorized user is assigned a quota of disk space in Dblocks called
logout quota, in which he may store his files permanently. These files will not
be removed from the storgge unless any one of the following situation occurs:
(1) when a file is deleted by the user himself, (2) when a file is inactive and
not accessed for more than a prescribed period (for example, a month), or (3)
when the project has been cancelled or terminated,

When a user is IOGINed and on-line, the actual disk space assigned to him
is five times the logout quota. The extra storage is assigned for storing
temporary data, non-permanent program or data files needed for the execution of
the user's work while he is on line. This on-line quota of disk space is called
the login quota. The actual number of blocks assigned as the 1login quota
depends on the logout quota and the available system capacity at the time.

After a user has IOGINed, he may enjoy the larger login quota for his
on-line work., When he is ready to sign-off, he must make sure that his disk
usage is under the logout quota, otherwise all efforts of signing off would
fail, or else the computer will delete the stored files according to a
predetermined order of priority until the logout quota requirement is met. 1In
the latter case, the computer may very well delete some important files.

The monitor commands for managing the files are discussed in Chapter 8.
However, several commands that are necessary 1in managing the quota will be
briefly discussed here. For more details of these commands, the readers are
referred to Chapter 8.

The monitor command R QUOLST is used to inquire about the current status
of the disk quota (login, 1logout, and system status). An example follows.
Again, lines in Ztalics are typed by the user:

R QUOLST) Explanation

User: 115103,320571 User's PPN

Str used left:(in) (out) (sys)

USRB: 180 120 -120 182616 Disk Status:
L System status

Tijmesharing {Core ClaJs: 0 - Logout quota status

Batch Core Class: 0 | [ogin quota status
L Disk block used

1~User's core classes
Storage device specification

In this example, the user has a logout quota of 60 blocks and a login
quota of 300 blocks. At the time of this inquiry, he has used up 180 blocks.
Therefore, the above printout indicates that he is still 120 blocks under the
login quota, but he is 120 blocks above the logout quota. Should he wish to
sign off at this time, he must first delete his files for at least a total of
120 blocks. So, at this point it is important to him to know how to find out
what he has in the storage and how he can selectively delete them. Two other
monitor commands useful for quota management are:

DIRECT 2

and DIRECT name.ext 2

When the command DIRECT (for "directory") is given, the terminal will
print out a list of user's files in the disk storage, along with their names,

To Sign Off 25

extensions, file sizes in blocks and other pertinent information. The total
amount of storage occupied is printed out at the end of the list. A sample
result of this command is shown below:

DIRECT

TEST DAT 60 <057> 18-MAY-79 USRB: [115103,320571]
SAMPLE FOR 48 <157> 19-MAY-79
SAMPLE REL 36 <057> 22-MAY-79
TEST BAK 36 <057> 24-MAY-79
TOTAL OF 180 BLOCKS IN 4 FILES ON USRB: {115103,320571]

The command DIRECT thus gives the user an inventory of files in the disk
storage at that time., If he is then ready to sign off from the computer, and if
he is over the logout quota, this inventory information will enable him to
decide which file he should erase in order to get below the logout quota limit.
The monitor command of DEIETE is used to erase a file in the storage. If in the
above example, the files TEST.DAT, SAMPLE.REL and TEST.BAK are to be erased,
then the command issued is :

«DELETE TEST.DAT, SAMPLE.REL, TEST.BAK

After erasure is completed, the terminal will report the names of the
erased files and the size of total restored storage. The details of file names,
extensions and other information about file name structure are given in Section
1.12.

1.11 Sign—-Off Procedure

To leave the system, the user must terminate his job by supplying a
monitor command KJOB ("to kill the job"). The system will respond by requesting
a code letter for confirmation and file disposition. Thus, the command format
for signing-off is:

KJOB)
CONFPIRM: (code letter) 2

A shortened form of this command is:

[V.K/(code letter) J I

The most commonly used code letters in the KJOB command are:

F = fast signoff; save all files

D = fast signoff; delete all files., Computer will respond with A
confirming question: "DELETE ALL FILES?" Answer YES and return the
carriage.

P = preserve all files except temporary files.

H = HELP! Computer will respond will detailed instructions.

26 CHAPTER 1 INTRODUCTION

I = list file names, one at a time, and apply code letter decision
individually. The code letters for individual decision are:

P = preserve the file
S = save the file
= delete the file

learn if over logout quota on this file

m O xR
[}

= skip to next file and save this file if below logout quota for
this file. If not below logout quota, a message is typed and
the same file name is repeated.

H = HELP. Computer will respond -with the above information on code
letters. :

While files are disposed per user's code letter instruction, the computer
will make a check on logout quota, gather all usage and accounting information,
terminate the user's job and print out a summary of the job. For example:

K/F

JOB 16 [115103,320571] off TTY43 at 2032 9-May-80 Connect=29 Min
Disk R+W=83+76 Tape I0=0 Saved all files (450 blocks)

CPU 0:04 Core HWM=11P Units=0.1263 ($9.48)

The printout indicates that this user, with PPN of 115103,320571, was
assigned line 43 and job 16, signed off at 2032 on May 9, 1980. His terminal
was connected to the system for 29 minutes, used CPU or computer time for 4
seconds. He used disk, but not magnetic tapes. He has 450 blocks of saved
files. For this job, the highest core area used (HwWM=High-Water-Mark) was 11
pages or 5.5K words, and the charge is 0.1263 unit or $9.48.

The "unit" is an accounting device which combines all charges of the
service, including CPU time, disk usage, the length of connect time, the size of
core used, and time of the day, and a base charge, each with an appropriate
weighting factor to form an accounting formula.

Basic Concepts of Files 27

FILES

1.12 Basic Concept of Files

One of the important and convenient features of a time-sharing system is
that it is supported by mass storage devices. The need for mass storage dur ing
the early days of time-sharing is derived from the fact that only the most
important service programs and the program being executed at the moment may be
stored in the high-cost, high-speed magnetic core storage. The mass storage
serves as a temporary storage for programs and data not being processed at the
time. When the user's turn comes, his program and data will enter the core
Storage. When his allotted time is finished, the program and data in the core
return to the mass storage. Such transfer of program and data is an important
and unique operation in all time-sharing systems, and is called swapping. The
portion of the mass storage, magnetic disk and/or magnetic drum, assigned for
swapping is called a swapping device.

The space required for swapping is a relatively small portion of the
storage available in the mass storage devices. Thus a time~sharing system
generally is characterized by a very high reserve capacity of auxiliary storage.
The most frequent use of this capacity is to accommodate users' programs and/or
data. These stored programs and/or data are called files.

Each language processor in the time-sharing system contains facilities
for file management and file manipulation, and this information will be
discussed in various chapters in this book. It will be useful at this point,
however, to introduce some basic information and concepts.

The basic unit of information in a file is called a record. If a file is
visualized as consisting of a deck of punched cards, then each card becomes one
record. The information content of one record varies from case to case. A
blank card contains no information, and it is called a null record. A FORTRAN
source program record is limited to a maximum of 72 characters/record. For a
PIL program, there is no practical limit to the length of a record.

For the purpose of identification, each file is given a name. Once the
names are established, the computer will maintain a directory so that users need
not be concerned with the exact locations or addresses on the disk to locate
their files. For the DEC System-10, the format of a complete name of a file is:

DEV: NAME.EXT {m,n] <xyz>
where:
DEV: = name of device on which the file is stored, If this part is
omitted in the complete name, it is understood that the device is

user's assigned disk area.

NAME = file name consisting of one to six letters and/or digits, with no
embedded blank.

.EXT = file extension consisting of zero to 3 letters and/or digits with
no embedded blank. See more explanations below.

[m,n] = the PPN of the person who created or owned the file. Note the
use of square brackets.

28 CHAPTER 1 INTRODUCTION

<xyz> = a three-digit (octal) protection code. See more explanation
below. Note the use of angular brackets.

The file extension is the part of file identification used to indicate
the language or format of the file. The following are the most frequently used
file extensions.

.PIL A PIL {language) program file

.FOR A FORTRAN source program file

~REL A relocatable binary file, or the "object deck”

.BAS A BASIC (language) source program file

.BAK A backup file

.DAT A data file

.TMP A temporary file

A null extension (no extension)

Examples:
NEWTON.PIL A PIL program file named NEWTON.
NEWTON ., FOR A FORTRAN program file named NEWION.
NEWTON. REL An object program compiled from NEWION.FOR
NEWTON.BAS A BASIC program file named NEWTON.
FOROL.DAT A data file named FOROL.

Symbols "*" and "?" are used as "wild cards" to represent a class of file
names or extensions. The following examples will demonstrate their use:

Examples:

NEWTION, * All files named NEWTON of any extension.

* ,FOR All FORTRAN files.

* % All files.

F????.DAT All data files whose names are 5 characters
or less and begin with F.

D12??,D?? A files whose names begin with "D12" and
contain 5 characters or less, and whose
extensions begin with the letter D and con-
tain 3 or less characters.

D12??.* All files whose names begin with "D12" and

contain 5 characters or less.

The protection code is a 3-digit octal number xyz, each digit ranging
from 0 to 7. Each digit defines a protection level of the file against a
certain class of users:

X = protection level against the file owner himself.
y = protection level against users sharing the same project number.
z = protection level against the general public.

Protection Codes 29

The levels of protection range from 0 to 7, and level 7 is the highest.
The exact definition of each protection level is given below:

Code Digit Access Protection*

No access privileges

Execute only

Level 6 + read privilege

Level 5 + append privilege

Level 4 + update privilege

Level 3 + write privilege

Level 2 + rename privilege

Level 1 + change protection privilege

CSCHENDWe O]

The access protection can be changed by executing the RENAME or PROTECT
monitor command (see Chapter 8) or by using the service program PIP (see
Chapter 7). Since there are 8 levels of protection in each of three classes of
users, there are 512 different shades of protection-level combinations possible.
Normally, one need only be concerned with a few commonly used codes:

Protection Codes Applications
077,177 Strictly private and non-sharable, such as
grade files maintained by an instructor.
057,177 Sharable within a project, for example, a
program to be shared by all students in a
course.
055,155 Sharable with the computer community, but

the file may not be modified by anyone
except the file owner.

The System assigns a default protection level of 057, set automatically
by the computer if the person does not specify any protection code when he
creates the file., In some coursework, instructors may arrange to have the
default protection level automatically set at 077. In such a case, the
protection code of a student's file is 077 to his classmates, but is 057 to his
instructor. '

*Subject to minor local variations. For example, at the University of
Pittsburgh, access protection designated by the =x-digit has been modified
slightly.

30 CHAPTER 1 INTRODUCTION

EXERCISE ON A TIME-SHARING TERMINAL

For a person with no prior experience with using a computer, it is quite
natural for him to feel intimidated when he gets on the computer for the first
time. Beginners should feel assured by the fact that very little they do can
hurt the computer, except if he gets physically violent and abuses the computer
equipment. A session on a terminal to become familiar with its function and
operation is highly recommended. The following is a recommended exercise.

(1) With a valid PPN and a password, practise sign-on and change-password
procedures. Warning: Do not mix up or forget your new password, or else you
will not get back on the computer again.

(2) Once signed on, type any gibberish, return the carriage, and watch
the error message from the computer. Always wait for the prompt symbol "." to
appear, then type in your line. Don't leave a blank or space after the ".", and
don't forget to return the carriage at the end of each line.

(3) Copy a file into your own disk for the terminal exercise. For
example, to copy a new bulletin of the System, use the following command:

.COPY NEWS.DAT=5YS:NEWS

Note the period in the first column is already furnished by the computer;
you just type in the rest of the line and return the carriage. After this, use
the DIRECT command the and R QUOLST command to find out the status and quota of
your disk storage.

(4) After the file is copied into your storage, do the following
exercises:

a. Print out the file by the command:
.TYPE NEWS.DAT

After a few lines are typed out, kill the typing Jjob by either a
CIRL-0 or multiple CTRL-C (twice or more). The news file is quite
long and a complete typeout will take a long time. If you are
curious about what the rest of the news bulletin is, apply the
following command:

.PRINT NEWS.DAT

and a printer copy will be produced at the printer. The printout
will have your programmer number printed in big block letters on the
first page for identification.

b. There is a group of monitor commands that controls the functions of
a terminal. They are discussed in Chapter 8 on Operating System
commands. However, several commands may be useful enough to the
beginner that they will be given here for exercise:

.TTY WIDTH n

This command will set the right margin of the terminal at the nth
column, The value "n" may range from 17 to 200. When you sign on

Exercises 31

to the System, the right margin is automatically set at 72,
.TTY PAGE

After this command is-'given, a CIRL-S will suspend the output (but
not kill it), and CTRL-Q will resume it. The purpose is to stop the
output in order to examine the output that has already been
produced.

After setting the right margin at a new value and giving the
TTY PAGE command, repeat the exercise of typing out NEWS.DAT. Use
both CTRL~S and CTRL-Q to control the printing.

(5) While still signed on, try to change to another system. Can you do
it? '

(6) Check your logout quota status. If you are still under your gquota,
keep "stuffing" your storage by repeating step 3 above (each time using a new
file name), until you have gone over the quota. Confirm that by using the
R QUOLST and DIRECT commands. 'Try to sign off in this condition.

(7) Clean up your disk storage and sign off.

(8) Repeat steps 1 through 7 by first signing on purposely on the wrong
system. What are the consequences? What is the warning message from the
computer? What are the things you cannot do in the wrong system? What are the
things you can do in either system?

When you complete this exercise with reasonable facility, you may
consider yourself granted a beginner's driver license. Congratulations!

32

CHAPTER 1 INTRODUCTION

REFERENCES

A PRIMER FOR PITT TIME-SHARING SYSTEM (PTSS), T. W. Sze, University of
Pittsburgh, Pittsburgh, Pennsylvania; 1970.

INTRODUCTION TO A TIME-SHARING SYSTEM, T. W. Sze, University of
Pittsburgh, Pittsburgh, Pennsylvania; 1972.

ALL ABOUT TELEPRINTER TERMINALS, Datapro Research Coporation, Delran, New
Jersey; 1976.

LA36 DECwriter II USERS MANUAL, Digital Equipment Corporation, Maynard,
Massachusetts; 1974.

INTRODUCTION TO COMPUTING AT PITT, DEC-10 Documentation-1, Computer
Center, University of Pittsburgh, Pittsburgh, Pennsylvania; April,
1980.

UNIVERSITY COMPUTER CENTER, ACADEMIC SERVICES, Computer Center, University
of Pittsburgh, Pittsburgh, Pennsylvania; 1978.

INDEX OF COMPUTER CENTER DOCUMENTATION AND SERVICES, Computer Center,
University of Pittsburgh, Pittsburgh, Pennsylvania; September, 1978.

INTRODUCTION TO DECSYSTEM-10: TIME-SHARING AND BATCH, T, W. Sze,
University of Pittsburgh, Pittsburgh, Pennsylvania; First Edition,
1974; Second edition, 1977.

CHAPTER 2

TEXT EDITOR

Everything must have a beginning., From a
user's point of view, his starting point is to enter
his program and/or data into the computer. The DEC
System—-10 is mainly disk-based machine. That means,
the computer will look in the user's disk area for the
program a user wants to execute. Therefore, in order
to do any computer processing, a user must first place
his program and/or data in the disk., The text editor
is a system program that will enable the user to
perform this task.

2.1 Introduction

The UPDATE (University of Pittsburgh DAta and Text Editor)* is a service
program with which a user can correct, modify, duplicate, or delete parts of a
stored program or data file.

In order to edit a program or data file, it must be one already stored on
disk, magnetic tape, or DECtape. However, if the source material is on tape,
using UPDATE will result in an edited copy of material stored on disk, and the
original material on tape is unchanged. Ultimate changes on tape still require
the use of another service program, such as PIP (see Chapter 7), to delete the
old file on tape and to transfer the new file from disk to tape. Otherwise, the
new file is re-copied onto the tape so that the old and the new copies co-exist
together on the tape. Therefore, for all practical purposes, UPDATE is used as
a disk-to-disk editor, taking source material from the disk and storing the
edited copy back on the disk. Discussions in this chapter are based on such
disk-to-disk editing.

After the user signs on in the usual way, he can get the service of
UPDATE by typing the following monitor command:

-R UPDATE or .UPDATE

*Developed by Gerald W. Bradley, University of Pittsburgh (Reference 7).
33

34 CHAPTER 2 TEXT EDITOR

When the UPDATE editor is assigned, the computer will first ask for the
name of the input file to be edited in this manner:

Jt UPDATE
INPUT=>

The user will then type in after the greater-than sign the file name,
extension, file owner's PPN if the user is not the owner. For example:

R UPDATE R UPDATE
INPUT=>SAMPLE . FOR INPUT=>SAMPLE. FOR[115103,320571]
> >

When the greater-than sign is again printed by the computer, UPDATE is ready to
accept editing commands, and editing on the specified file can begin. As the
editing proceeds, whenever UPDATE is ready to accept a command or an insertion,
a sign ">" is printed out as a prompt symbol. The first space after the sign
should be considered as column No. 1.

The above process may be shortened by using the following formats:

.UPDATE SAMPLE.FOR .UPDATE SAMPLE,FOR[115103,320571)
> >

2.2 Selected Terminology

The following terms will be used quite frequently in the discussion of
the UPDATE commands:

(1) Record, or Line

A record or a line is a basic unit of information in a file. If a file
consists of a deck of punched cards, each card becomes one record. For a file
stored on disk, one record actually is a tiny length of track on the disk. The
information content for one record varies from case to case. In a FORTRAN
program, each record is limited to a maximum of 72 characters including blanks,
although each statement may extend for several records if needed. Sometimes,
there is no information at all on a record, such as a blank card, and this is
called a null record.

(2) Pointer

Once the input file is specified and loaded, the UPDATE at that time is
positioned at the first record, or line, of the file. At that point, editing
commands will refer to text material with that line as a reference point.
Later, if one wishes to make editing steps at another line, the UFDATE should be
re-positioned by appropriate commands. For convenience, we shall assume an
imaginery "pointer" which indicates the position of the record being aligned.
Thus, such a statement as "moving the pointer forward 5 records" should now make
sense.

(3) Line Numbers, Absolute and Relative

A file begins with record No. 1, then No. 2, etc. Such line numbers
represent the true positions of the records in the file, and are called the
absolute line numbers. On the other hand, it is often convenient to use as a

Terminology 35

reference the 1line currently pointed to and say, for example, "move forward 5
lines" or "back up 3 lines". These are then relative line numbers. Absolute
line numbers are always expressed by unsigned positive integers, and relative
line numbers by signed integers. Use "+" sign for forward reference and "-" for
backward reference in specifying relative line numbers, Note that a file always
begins at line number 1, and its line numbers are always contiguous. Therefore,
if lines 4 and 5 are deleted during editing, then line 6 becomes line 4, 7
becomes 5, etc.

(4) Delimiter While the pointer indicates the position of a line in a
text, the position of text within a line is indicated by the use of delimiters.
These delimiters may be thought of as guotation marks in the English language,
except that any special character may be used as a delimiter in UPDATE. Thus,
if one wishes to set off the last three words of this particular paragraph, he
may specify:

"he may specify:" or /he may specify:/
or ?he may specify:? or S$he may specify:$ etc.

Because of its similarity with the quotation, the string set off by a pair of
delimiters will be referred to as a. "quoted string" or simply a "quotation”.
There are several important rules of delimiter usage in the UPDATE editor:

A. Use consistent characters as delimiters for a quotation. While any
special character may be used as a delimiter, the choice of the
beginning-of—-quotation (BOQ) delimiter automatically decides the use
of the same character as the end-of-quotation (EOQ) delimiter. The
following examples should be self-explanatory:

Valid Use of Delimiters Invalid Use
"quoted text" (quoted text)
(quoted text(<quoted text>

B. If a quoted string contains a special character, that particular
character should not be used as a delimiter for this quotation. For
example, if we wish to quote a string "less than $5.00" and use "$" as
a delimiter, the result will be misinterpreted by UPDATE.

C. If several quotations are placed in one UPDATE command, the following
rules apply:

a. The first BOQ delimiter determines the character to use.

b. Multiple quotations must all refer to materials on the same
record.

c. When multiple quotations are placed together, two adjacent
delimiters should always be merged into a single one to avoid
ambiguity. In other words, a delimiter should not only serve as
the BOQ delimiter for the following quotation, but also as the EOQ
delimiter for the preceding quotation. Thus a general appearance
of a multiple quotation will be something like this:

/QUOTE 1/QUOTE 2/QUOTE 3/

36 CHAPTER 2 TEXT EDITOR

If this multiple quote is written as:

/QUOTE 1//QUOTE 2//QUOTE 3/

it will actually be interpreted by UPDATE as 5 gquotations, the
second and the fourth being null strings.

D. The contents of a quotation must be exact and unique. When UPDATE
receives a quoted string, it will try to search in the pointed line
for a group of characters exactly matching the quotation. In such a
matching process, the capital letters, the lower cases, the blanks,
gspecial characters, and control characters are all legitimate and
different characters. For this reason, a quoted string must be given
in the exact way as in the pointed line.

Example: Suppose we wish to quote the underscored portion below:

5 Yl=Y0+Y1

Correct Quotation Incorrect Quotation

/Y 1/ /Y1/

E. When UPDATE searches a line text to match a guotation, it begins with
the character in column one. As the search moves to the right, and a
match is found, the search is completed. If a quoted string appears
several times in a text line, UPDATE will always pick the string
nearest to the first column. ‘Therefore, 1f we wish to sepcify
non-unique strings further to the right, the string must be expanded
in front and/or in the back until the string is unigue, or else it is
the first such quotation when the search starts from the left end.

Example: Suppose we wish. to quote the underscored portion below:

501 IF(Y.LT.0.0001) GO TO 510

Correct Quotation Incorrect Quotation
/0.0001L/ /0/
/.000/ /01/
/0Ly / etc. /00/

F. A single quotation followed immediately by an integer means this
qguotation begins from column indicated. For example, the guotation
/01/19 means the character string "01" that begins at column No., 19.

G. All quotations must be bracketed within a pair of delimiters.
Unclosed quotation is an error.

$TO, SAT & STRAVEL 37

A PRIMER OF UPDATE EDITOR

The text editor UPDATE contains several dozens of editing commands. For
a beginner, it would be a mistake to attempt to learn them all at one time.
Experience has shown that most editings are done with a limited set of editing
commands. Complex command functions can usually be accomplished by applying
several simpler commands in sequence. For the sake of learning efficiency, it
would be much more cost effective for a beginner to concentrate on a few basic
editing functions and commands. They are:

(1) To move a pointer to a designated line.

(2) To make changes on a pointed line,

(3) To delete the pointed line or lines.

(4) To type out the content of the pointed line or lines.

(5) To insert a line at a designated place.

(6) To conclude the editing.

The commands given in the following sections pertain to these basic
functions. All UPDATE commands must have a "$" in the first column. The
spelling of each command may be shortened to Jjust the first two letters.

Misspelling after the first two letters will be ignored and will not be
considered an error.

2.3 Movement of Pointer, $TO, SAT and S$TRAVEL

When the UPDATE first opens an input file, the pointer is always
positioned at line No. 1. There are three commands one may use to move the
pointer elsewhere, and they are $TO, $AT and S$TRAVEL.

$TO will move the pointer to a specified place, and once there the new
line is typed out for verification.

SAT performs the same function as $TO, but the typing of a new line is
suppressed.

STRAVEL performs the same function as $TO, and the command is
"remembered”. The same $TRAVEL command can be executed again later by issuing a
$GO command.

All three commands have the same command formats and variations, and
those for $TO are listed below. Variations of formats would be the same for the
other two commands, simply by replacing $TO in the following listing by either
SAT or STR.

38 CHAPTER 2 TEXT EDITOR

A. STON Move the pointer to line N.

B, STO +N Move the pointer N lines forward.

C. $T0 -N Move the pointer N lines backward.

D. S$TO /TEXT/ Move the pointer forward from the present line

until it encounters a line with the exact string
/TEXT/ in it.

E. $TO S$TEXTS Similar to case D above, with an exception that
the match will not consider the difference
between upper and lower case letters, nor will
it take into account any blank between

characters.

F. §$TO /TEXT/K Search for the string TEXT that begins at column
No. K.

G. 81O § Move the pointer to the last line.

Notice the mode of search in cases D, E and F. The search starts from
the line below the pointed line. If there is a string TEXT in the pointed line,
it will not be found. If one wishes to move to the first appearance of /TEXT/
or STEXT$S while he 1is in the mlddle section of the file, he should issue the
comnand $TO 1 first before giving a {TE_JL, or S$TO/TEXT/K, or $TO $STEXTSS
command. This is so that he will not miss any earller existences of the strlng
TEXT in the lines before the pointer. But even so, such a search would miss
line 1, unless the user examines the line typed out after the command $TO 1.
This problem may be solved by inserting a blank line as Jline 1 and later
removing it before finishing the editing job.

To move forward one line, two ways are possible: Either use $TO +1
command, or simply return the carriage.

To move backward one line, either use the command $TO -1, or press
backspace key and then return the carriage.

While moving the pointer back and forth during the editing job, it will
become difficult to keep track of the line number of the pointer. The command
SWHERE will cause a number typed out enclosed in brackets to indicate the
current pointer line number.

Example: Suppose you wish to examine every FORMAT statement in your
FORTRAN program. You will first call the file using the UPDATE, Then apply the
following command:

>$TRAVEL /FORMAT/

The first time you apply it this way, it will move the pointer to the first
FORMAT statement, and print it out. Any revision of the statement may be done
there and then. The movement to the subsequent FORMAT statements may be
accomplished by giving the command:

>$GO

Naturally, if a FORMAT statement in the program is misspelled, the $TRAVEL
command will not find that statement.

SCHANGE SALTER & SSUBSTITUTE 39

2.4 Change of Text Material, S$SCHANGE, SALTER and $SUBSTITUTE

When the appropriate line is positioned by the $TO, $AT or $TRAVEL
command, editing changes may be performed using the $CHANGE, or SALTER command.
The standard format is:

$CHANGE /OLD TEXT/NEW TEXT/
For multiple changes on the same line, the command format is:
SCHANGE /OLD 1/NEW 1/0LD 2/NEW 2/0LD 3/NEW 3/...

The rules of delimiters in multiple quotations have been discussed before and
are applicable here. Again, the delimiters for multiple quotations must be
consistent for all quotations.

As a convenience feature, after the S$CHANGE command 1is executed, the
entire new line is typed out for verification. The pointer position remains
unchanged.

Example: Suppose the indicated changes are required as shown below:
space C oLt Go TO
351F(jE;;Iun(ig/é§§§f§6;%7
A

The following two lines show first the ‘editing command of SCHANGE and then the
edited text automatically typed out after execgtion. {Remember our convention
in this book —-—— User's input line shown in Ztalics):

>SCHANGE/5/5 /9/(/>/.LT./G/GO /.//
35 IF (IPRINT.LT.0) GO TO 90

There are, of course, many other ways to write the above $CHANGE command to
achieve the same result.

SAITER is used in the same way as the $CHANGE command, except that $ALTER
does not allow multiple changes. Its main usefulness is in the compounded
editing commands, as will be illustrated in a later section. '

SSUBSTITUTE differs from SCHANGE or SAITER in this manner: The command
SCHANGE or SALTER is used to change a string in one single line positioned by
the pointer, The command $SUBSTITUTE is used to alter a string in the entire
file beginning from the pointed line. Again, the string of characters to be
changed must be specified exactly and uniquely. Otherwise, inadvertent changes
will result at unintended places. For example, if one wishes to change the
variable X into Y in a certain program, specifying $SUBSTITUTE/X/Y/ would change
every X-character into Y-character. Thus, inadvertently, another variable with
the name "INDEX" would become "INDEY", and the exponential function name EXP
would be changed to EYP.

There are two variations for the command $SUBSTITUTE:

40 CHAPTER 2 TEXT EDITOR

A, SSUBSTITUTE /OLDTEXT/NEWTEXT/

Starting from the pointed line, this command will search for a
string /OLDTEXT/ and each time upon finding it, change it into
/NEWTEXT/ until the end of the file is reached.

B, S$SUBSTITUTE /OLDTEXT/NEWTEXT/K

Starting from the pointed line, this command will search for a
string /OLDTEXT/ that begins at the Kth column, and each time upon
finding it change it to 7%;:‘WTE>@7 until the end of the file is
reached. After the S$SUBSTITUTE command is executed successfully,
the pointer will be relocated at the last line of the file.

2.5 Deletion of Lines, $SDELETE

When a line or a group of consecutive lines are to be deleted, first
position the pointer to that line or the first line of that group, using either
the $TO or $AT command. Then depending on what is to be deleted, use the
command S$DELETE in the following ways:

(1) SDELETE N Delete N lines beginning with the one presently
pointed to. After the deletion, the pointer moves forward to the line
immediately after the deleted group. If the deleted group happens to be the
final N lines of the file, the pointer drops back one line and positions at the
new last line. If N is larger than the number of lines left on the input file,
a command SDELETE N will delete every line remaining and then type out a "?" to
indicate error. This feature is actually quite useful when one wishes to delete
the rest of the text but does not know how many lines there are. Then, he can
simply issue a command of S$DELETE 10000, or any number larger than the number of
remaining lines.

(2) SDELETE This is automatically interpreted as $DELETE 1.

(3) SDELETE $ Beginning with the currently pointed 1line, this

command will erase the rest of the file.
SDELETE -N is NOT a valid command.
Example: See below for the "Before" and "After" with a $DELETE command:

Text AFTER A

Line Number Text BEFORE Command S$SDE3

1 11 11
2 —_ 22}/tobe —> 55
3 0ld 33 | deleted New 66
4 pointer 44 | pointer 77
5 55 88
6 66 99
7

8

9

STYPE 41

Note that although the pointef is positioned at a new line of text, the line
number of the pointed line remains the same. The line numbers and the text are
then automatically readjusted.

2.6 Output of Lines, STYPE

Frequently, it is desirable to display the text of a line on the terminal
for examination. The UPDATE command for this function is $TYPE. The following
shows the variations:

A, STYPE N This command will type out N lines beginning with the
present line., The position of the pointer remains
unchanged.

B. S$TYPE Same as $TYPE 1.

C. STYPE $ This command will type out the currently pointed 1line

and the 1last 1line of the file. Pointer position
remains unchanged.

2.7 Line Insertion

UPDATE will regard any user input as UPDATE command if column 1 is a "$"
character. Conversely, UPDATE will regard any user input as line insertion if
the line does not begin with a "$" in column 1. When a 1line is inserted, it
will always be inserted after the currently pointed line. If you wish to insert
a line before the pointed line, you must precede your insertion by a . "$BEFORE"
command. When a new line has been inserted, the pointer will move forward one
line, making the new insertion the currently pointed line.

Beside adding lines to an old file, this process is particularly useful
in creating new files. The process of creating a new file is outlined as
follows:

(1) Call for UPDATE and give a file name that does not yet exist. For
example:

.UPDATE NEW.FOR

where NEW.FOR is a file name given to the new file to be created.

(2) The pointer of the blank file called by the UPDATE will be positioned
at line zero, Type 1in the new file, one line at a time., Each line is
terminated by a carriage return in the conventional way of typing.

(3) While the new file is being created, the editing commands can be
applied to move the pointer, to type out the lines, to delete or to change the
contents of a line,

(4) When all lines are entered, exit from UPDATE by a command $END.

42 CHAPTER 2 TEXT EDITOR

2.8 Completion of an Editing Session, $DONE, $END and $FINISH

All three commands signify the end of current editing of the file. They
differ in how the file should be stored and named.

when the SDONE command is issued, UPDATE will ask the user to supply a
file name for the edited file, for example:

>$DONE
CATALOG NAME=>SAMPLE.,FOR
6 BIOCKS WRITTEN ON SAMPLE.FOR[115103,320571]

EXIT

If the file name and the extension given here are exactly the same as
those of the old file, the old file is replaced by the new file. As a safety
measure, the old file is retained in the storage with the extension changed to
BAK (for "backup"), in case the user changes his mind about his revisions. If

either the name or the extension or both are different from those of the old
file, a new file is created and stored on disk along with the old file, and the
old file is not disturbed. If the name and the extension given during the
cataloging are exactly the same with those of some other file in the disk
storage, naming two different files with the same name causes an error, and the
UPDATE will reject the duplicate name and ask for a new name. This is
illustrated below:

>$DONE

CATAIOG NAME=>NEW, FOR :

FILE DSK:E20016.TMP[115103,320571]to NEW.FOR[115103,320571]
RENAME error (4) - Already existing file

CATALOG NAME=>SAMPLE.FOR

6 BLOCKS WRITTEN ON SAMPLE.FOR[115103,320571]

EXIT

The catalog name can also contain a protection code specification, for
example, SAMPLE.FOR<155>. When the protection code is omitted, the UPDATE will
automatically assign a protection code of 057.

When the $END command is issued, a fast exit 1is accomplished and the
edited file will have the same file name, extension and protection code as those
of the old file. The old file becomes a BAK file. After the storage process is
completed, UPDATE returns the user to the monitor,

When the SFINISH command is issued, it will perform the same function as
SEND. However, instead of returning the control to the monitor, the user will
retain the service of the UPDATE editor and can then start a new editing job.
Therefore, this command is equivalent to issuing two successive commands: an
UPDATE command of SEND followed by a monitor command of .R UPDAIE.

1/0 Files in Editing 43

OTHER UPDATE COMMANDS AND PROCEDURES

When UPDATE is called, several events happen:

(1) The UPDATE program is loaded into the computer memory assigned to the
user .

(2) Two disk areas are assigned as working files. One is used as the
input file labeled as El and the other is used as the output file labeled as EZ2.
The actual file names assigned are E100xx.TMP and E200yy.TMP respectively, where
"xx" and "yy" are numbers arbitrarily assigned.

(3) After the input file name is given by the user, as requested by the
UPDATE, a copy of that file is loaded into El. If no such file name exists, El
remains a blank file. In either case, E2 is a blank file at this point.

(4) UPDATE will read up to 100 lines (which may be specified and modified
by a $FACTOR command) from El file into the memory.

The logic flow of the text information during an editing session is shown
in Figure 2.1,

Now, as the editing session
[f progresses and the pointer advances

El File through the file, more lines are read
into the memory. When the number of
lines in the memory is more than 100, or

. whatever value specified by a previous

: $SFACTOR command, the lines behind the

‘ Assigned pointer are written into the E2 file.
- Computer Thus, if the pointer keeps advancing
% Memory forward, more lines are transferred into

E2. When the editing is finally

completed, all lines in the core, and

£2 File all the remaining lines in the E1 file

are copied onto the E2 file. The E2

file is then renamed by a name

designated by the user, and the El file

is erased. It is significant to note

Figure 2.1 fron Figure 2.1 that the movements of

lines from E1 to the computer memory,

then onto the E2 file, is always in one
direction only.

Editing Input/Output Files

Thus, if the pointer is moved backward, there will be complications. If
the pointer, after moved backward, is pointing to a line still in the core
memory, events are still normal. If the pointer is positioned at a line mo
longer in the core memory, that line has already been copied onto the E2 file
and cannot be retrieved because the transfer between the memory and E2 is
one-way only, as shown in Figure 2.1. This will set forth a sequence of events
described as follows:

First, the lines in the memory and all the remaining lines in the El file
will be copied onto the E2 file. The E2 file is then closed. The El file is
erased. The E2 file is renamed as the El file. The new El file is read into

the computer memory containing the line positioned by the pointer. The
backing-up of the pointer is now finally accomplished. These events resemble a

44 CHAPTER 2 TEXT EDITOR

situation when a driver misses an exit on a one-way urban beltway. In order to
exit at the missed exit point, he must drive the whole way around the one-way
highway and gets off at the desired exit. However, such events at the editing
session are "transparent" to the user, because at the terminal he will be
unaware of these. But this situation does suggest that backing up in
positioning a line should be done sparingly.

When E2 is closed, it is renamed by a name designated by the user if the
closing command is $DONE, and the input file is not disturbed. If the SEND or
$FINISH command is used, the E2 file is renamed by the same input name, and the
input file is renamed as a BAK file.

If the editing involves an auxiliary file as an input or output for the

editing, another disk file labeled E3 is assigned. This happens with the
command $ONTO or $FROM (See Section 2.16).

2.9 Line Insertion Mode

UPDATE will treat all input lines that start with a $-sign in the column
1 as an UPDATE command. Conversely, UPDATE will treat any input information
without a $-sign in column one as a non-command and as information to be
inserted in the text.

There are two modes of line insertion:

(1) Insertion after the pointer

A. Insertion of lines typed at the terminal

Any input information to the UPDATE without a dollar sign in column
one will automatically be inserted immediately after the current line. When the
insertion of one line is completed, the pointer moves forward one number, so
that it is now positioned .at the newly inserted line. The next typed line will
be inserted immediately after the previously inserted line, and again the
pointer moves to the newly created line., This feature makes it very convenient
to use the terminal keyboard to create a file.

The insertion mode is suspended whenever an UPDATE command (with a
$-sign in the first column) is issued.

Example: Observe the "Before" and the "After" of an insertion procedure:

Line 0ld Text and New Text and
Number Pointer Position User types in: Pointer Position
1 11 A4 11
2 ~ 22 BB 22
3 33 ce AA
4 44 BB
5 —» CC
6 33
7 44

Line Insertions 45

So the UPDATE interprets every input line beginning with a $-sign as
an UPDATE command. This may develop into a dilemma if the user attempts to
insert a line that begins with a $-sign. For example, consider the statement:
"$5,00 IS TOO MUCH TO PAY". When this statement is inserted, UPDATE will puzzle
over the meaning of "$5." as an UPDATE command, and the execution results in an
error report,

There are several ways to solve this problem: One is to insert a
line: "X5.00 IS TOO MUCH TO PAY", and then use SCHANGE command to change the
first "X" into "$". Another way is to insert the line: " $5.00 IS TOO MUCH TO
PAY", leaving a blank in column 1, and then remove it using the $SCHANGE command.
If there are many such statements to insert (for example, in preparing a control
file for batch processing), the process may be simplified by an UPDATE command:

SIS #

where "#" can be any special character except ";". The effect of this command
is to replace the format of all subsequent editing commands from $XX to #XX,
therefore allowing insertion of lines beginning with "$", but disallowing
insertion of lines beginning with "#". A command #IS $ later will restore the
UPDATE to the normal command format.

To insert a blank line, one should not simply press the carriage
return, because that action would merely move the pointer forward one line, and
no insertion of any kind is accomplished. A blank line may be inserted by
typing (at least) one blank then returning the carriage.

B. Insertion of a stored file

If the lines to be inserted are already stored on disk as a file
whose name 1s given, for example, as NAME.EXT, by its owner with PPN of [m,n],
the insertion can be made simply in this manner:

a. Position the pointer at the 1line immediately before the
insertion.

b. Issue the following UPDATE command:

$INPUT = NAME.EXT [m,n]

As usual, if [m,n] are the user's own numbers, they may be omitted in the
command. After the insertion, the pointer moves forward to the last inserted
line. - This command is frequently used for merging parts of program or data
files.

Although the inserted lines come from a stored file on the disk, the
UPDATE editor treats them the same way as if they come from the terminal. And
hence, the lines in a stored file insertion are subject to the same UPDATE
editing rules, particularly about the interpretation of the first column
character. If a file will be used as a straight forward insertion of lines, it
should be inspected first to see if there is no "$" sign in the first columns.
If there is any "$" in the first column, appropriate action, such as "S$IS #"
command, should be taken prior to the insertion. On the other hand, another
avenue of issuing editing commands in addition to the terminal is now opened up.
One now may use either the terminal or a stored file to issue editing commands.

46 CHAPTER 2 TEXT EDITOR

UPDATE is greatly enhanced when a sequence of fixed UPDATE commands, which will
be executed frequently, is stored as a file. Execution of this sequence of
commands can be carried out automatically simply by the $INPUT command., These
stored files now become editing programs and can be used over and over.

Example: The following is a file ATTEND.DAT that needs updating each
week. The contents with the column numbers are shown below:

(Column) 111111111122222222223

(Numbers) 123456789012345678901234567890
PERSON A 10110 1
PERSON B 10011 2
PERSON C 01101 3
PERSON D 10111 2
PERSON 7 00110 126

Suppose the requirement of updating the £file is as follows. Remove
colunn-16; shift columns 17-20 to the left by one column; and replace
column-20 by zeros.

An "editing program”" may be designed and stored as EDIT.PRG that contains
the folowing statements:

SAT1

$SUBSTITUTE /1/0/16

SAT1

SSUBSTITUTE /0//16

$AT1

$SUBSTITUTE / /0 /20 (=blank)

This sequence may be executed as shown below:
. UPATE ATTEND.DAT
> $INPUT=EDIT.PRM
>$END
1 BLOCK WRITTEN ON ATTEND.DAT([115103,320571]

EXIT

When this editing program is executed, columns 17-20 will be shifted to
the left by one column.

(2) Insertion before the pointer

To insert material before the pointer, first apply the command $BEFORE.
Then all lines with no ($) sign at the column-1 will be inserted before the
pointer. In the meantime, the pointer will move to the last inserted line. The
Insertion mode is terminated by any UPDATE command. See the example below:

Compounded Editing Commands 47

Example: Observe the "Before" and "After":

Line 0l1d Text and New Text and

Number Pointer Position User types in: Pointer Position
1 —11 $BEFORE AA
2 22 AA — BB
3 33 BB 11
4 44 22
5 33
6 44

2.10 Compounded Editing Commands

The UPDATE commands discussed so far have the format of one command per
command 1line. When several commands are issued on a single command line, they
become a compounded command. The general format of a compounded command is:

SCOMMAND 1; COMMAND 2; COMMAND 3; ...

The semicolons ";" are used to separate the successive commands, and therefore
no semicolon should appear after the last command in the compounded structure.
Also, if any of the commands contains a quotation of string, the string must not
contain any semicolon-character, because it will be misunderstood as a command
delimiter. Note that the dollar sign "$" is needed only for the first command.
There are several straight-forward rules for constructing a compounded UPDATE
command :

(1) All commands of a compounded command must fit in a single command
line.

(2) The individual commands in the compounded command are executed in
their natural order from left to right.

(3) Certain commands may cause ambiguity and error if they are followed
by other commands in a compounded structure. Consider the following compounded
command :

$TO 5; CHANGE /OLD1/NEWl/; TO/TEXT/; TYPE 4

%l k 2 i~ 3 -~ﬂ*—4 ———4 Interpretation 1:

4 single commands’

%i_mm%<,w. 2 —L 3 m*~4 Interpretation 2:
3 single commands

with multiple string
changes in SCHANGE

It can be seen that the interpretation is ambiguous and it will be unpredictable
how this command would be actually executed. To avoid this problem, commands of
this kind are always regarded as the last command in the structure, even if
there are more commands after them. If more commands are given after them in a
compounded command, the added commands are simply ignored, and no error return

48 CHAPTER 2 TEXT EDITOR

signal 1is returned. Thus, when the above example 1s executed, the part
"TO /TEXT/; TYPE 4" will not be executed. 1In order to accomplish the function
of the above compounded command, the above example should be modified to:

$TO 5; ALTER /OLD1/NEW1/; TO /TEXT/; TYPE 4

The ambiguity is now removed because the S$SALTER command can allow only one
change of string.

There are certain UPDATE commands that must be physically the last
command in a compounded structure. These commands are listed below:

Group UPDATE Commands
Multiple string change CHANGE
Change of command format IS
Auxiliary file operations INPUT, ONTO, FROM
End of editing session END, DONE, FINISH

Commands appended to any of the above commands in a compounded structure will
simply be ignored.

Compounded command structure format provides a convenience for input
commands. It also is a basis on which a simple and powerful editing program can
be built, especially when it couples the usage of $TRAVEL and $GO commands in
the compounded structure:

Example: SAT 1; TRAVEL /FORMAT/7; WHERE; GO

Function: Beginning at line 2, search for the string of characters
"FORMAT" that begins at column-7. When it is found, type out
the line itself and the line number. Repeat the £function
until the end of the file is reached. 1In other words, this
compounded command will print out all FORMAT statements and
where they are in a FORTRAN program. Notice this compounded
command will miss line 1; why?

Example: SAT1;TR/ /;AL/ / /3AT-1;GO
Function: Beginning from line 2, all multiple blanks will be reduced to
single blank.

Example: $TR/C/1;DE;AT-1;G0O
Function: Remove all Comment Lines in a FORTRAN program.

SMOVE

2.11 Move Command, $MOVE

This command will move a block of lines to somewhere else
There are two general formats:

multiple~command format.

(1) Single command format

49

in the file.
One is a single-command format, the other a

The merging of $MOVE N and $TO commands forms a single-command that will

move an N-line block to a place designated by the $TO command.

Before the move,

the pointer should always be positoned at the first line of the WN~line block.

Immediately after
N-line block at its new place,

A. SMOVE N TO M

B. SMOVE N TO +M

C. SMOVE N TO —-M

D, SMOVE N §$

E. $MOVE N TO /TEXT/

F. S$MOVE N TO /TEXT/K

the move, the pointer will always be at the last line of the
Because of the S$TO command,
variations of the $MOVE N TO commands.

there are many
They are listed below:

Move N-line block to a new position so that
the first line of the block is now line No.
M. '

Move an N-line block to a new position
starting immediately after the line which
has a relative line number of +M from the
last line of the block before the move.

Move an N-line block to a new position
immediately before the line which has a
relative line number of -M, relative to the
first line of the block.

Move an N-line block to the end of the

" file.
Move an N-line block and place it
immediately after the line beyond the

pointer that has the first appearance of
the string /TEXT/.

Move an N-line block and place it
immediately after the line beyond the
pointer that has the first appearance of
the string /TEXT/ that starts at the Kth
column.

Example: $MOVE N TO M
Line 01d Text and New Text and
Number Pointer Position $SMOVE Command Pointer Position
1 11 SMOVE 2 TO 3 11
2 —> 22 44
3 33] 22
4 44 _] —=33
5 55 55
6 66 66
7 77 77

50

CHAPTER 2 TEXT EDITOR
Example: $MOVE N TO +M
Line 0ld Text and New Text and
Number Pointer Position SMOVE Command Pointer Position _
1 11 0 2 TO +3 11
2 — =227 44
3 33[55
4 44 66
5 55 | 22
6 66 =+ 33
7 77 77
Example: SMOVE N TO -M
Line 0ld Text and New Text and
Number Pointer Position =~ $MOVE Command ~ _Pointer Position
1 11 $MO 2 TO -3 11
2 227 557
3 33 > 66 |
4 44 22
5 — =551 | 33
6 66 | 44
7 77 77
Example: $MOVE N TO §
Line 0ld Text and New Text and
Mumber Pointer Position =~ _$MOVE Command = _Pointer Position
1 11 SMO 2 TO § 11
2 - ’22‘;_) 44
3 335 | 55
4 44 66
5 55 | 77
6 66 ; 227
7 7oy - 33
Example: To interchange a pointed line with the next line.
Line 0ld Text and New Text and
_Number Pointer Position ~ $MOVE Command ~ _Pointer Position
1 11 Mo 1 TO +1 11
2 — =22~ 33
3 33_) — 22
4 44 44
5 55 55
6 66 66
7 77 77

$MOVE Command

$MO 1 TO -1

_$MOVE Command

SMo 2 TO '55!

~ _$MOVE Command

$MO 2 TO /3b/1

51

To interchange a pointed line with its preceding line.

New Text and
_Pointer Position

11
—= 33
22
44
55
66
77

New Text and
_Pointer Position

11
44
55
22"
33
66
77

New Text and
_Pointer Position

The search for /TEXT/ starts from the next line from the current line.

S$SMOVE
Example :
Line 01d Text and
Number Pointer Position
1 11
2 22 °1
3 ——m 33
4 44
5 55
6 66
7 77
Example: $MOVE N TO /TEXT/
Line 0ld Text and
_Number Pointer Position
1 11
2 22
3 330 1
4 44 i
5 55 . .1
6 66
7 77
Examgle: SMOVE N TO /TEXT/K
Line 0ld Text and
_Number ~ _Pointer Position
1 1b
2 011
3 2b [
4 b2 |
5 3b _ |
6 b3
7 4b
(b=blank)
Thus the

search will omit the current line and all lines prior to that.

following example shows an error of search:

The

52 CHAPTER 2 TEXT EDITOR

Example: SMOVE N TO /TEXT/
Line 0ld Text and New Text and
Number Pointer Position SMOVE Command Pointer Position
1 11 $Mo 2 TO /33/1 11
2 22 22
3 33 33
4 4 44
5 -—=55 — 77
6 66] | :
7 77 ¥ (Search unsuccessful when

reaching the end of file,
and moved lines are lost.)

(2) Multiple command format

Moving an N-line block of text can also be achieved with first a SMOVE N
command, and then when the destination is accurately positioned, with another
SHERE command. What actually happened is that the N-line block is temporarily
stored in an auxiliary file E3, and when the $HERE command is given, the lines
will re-enter the computer memory. The advantage of moving lines in this manner
is that the procedure becomes less error ptone because of accurate positioning
of the destination. 1In the nine examples shown above for the single~command
format, movements of lines can also be accomplished by a three-step procedure:
$MOVE N, accurate positioning by $TO, and then S$HERE commands. Observe the
difference in the 1line numbers used between the single-command and the
multiple~-command formats.

2.12 COPY Command

This command will duplicate a block of lines elsewhere in the file., The
format of the command is very similar to that of SMOVE, and so are the
variations. Instead of using TO for positioning in the S$MOVE command, S$COPY
uses AT for positioning the pointer. The variations of SCOPY are listed below
with similar definitions as applied to the $MOVE variations:

(1) Single command format

A. S$COPY N AT M
B. S$COPY N AT +M
C. $COPY N AT -M

D. $COPY N AT /TEXT/

E. $COPY N AT /TEXT/K

F. S$COPY N AT §

$COPY

(2) Multiple command format
SCOPY N
Accurate positioning command
SHERE
These variations are again illustrated by examples:
Example A: $COPY N AT M
Line 0ld Text and New Text and
Number Pointer Position $COPY Conmand Pointer Position
1 11 SCO 2 AT 3 11
2 - 22 _ 22
3 33)< 22’:
4 44 ——> 33
5 55 33
6. 66 44
7 77 55
8 66
9 77
Example B: $COPY N AT +M
Line Old Text and New Text and
_Number Pointer Position $COPY Command Pointer Position
1 11 8C0 2 AT +3 11
2 —-= 22 22
3 3311 33
4 4 44
5 55 55
6 66 _ | 66
7 77 22
8 —> 33]
9 77
Example C: SCOPY N AT -M
Line Old Text and New Text and
Number Pointer Position SCOPY Command Pointer Position
1 11 $Co 2 AT -2 11
2 22 22
3 33 33
4 44 _ 44
5 — 55771 Watch out for 5511, |,
6 66 tricky minus — 66 L lines
7 77 count here. A 55 -
8 poor feature. 66
9 77

53

54 CHAPTER 2 TEXT EDITOR

Example D: SCOPY N AT /TEXT/K
Line 0ld Text and . New Text and
Number Pointer Position $COPY Command Pointer Position
1 1b_ $CO 2 AT /3b/1 1b
2 —— bl bl
3 2b ;] 2b
4 b2 b2
5 3b | 3b
6 b3~ bl]
7 4b —=2b
8 b3
9 (b=blank) 4b

The four examples above show how $COPY command may be used in a
single-command format. If $COPY is used in a multiple-command format, the
commands to produce the same results as the above four examples will be:

Example A Example B Example C _ Example D
$CO 2 $CO 2 $CO 2 $CO 2

SAT 2 SAT+2 SAT -3 $AT/3b/1
$SHE SHE SHE $HE

Since the pointer will be positioned at a line beyond the line of the copied
group after each $COPY N command, the counting of lines is different.
Therefore, observe particularly the number of lines of movement for the pointer
in the first three cases.

2.13 Editing—Control-Function Switch Commands

There is a group of editing control functions that UPDATE can turn them
ON or OFF by commands. When a function is switched ON, that function will be in
force. Such software switches have many similar properties as a hardware
switch., For example, a function will be OFF unless explicitly turned OFF, or
vice versa. Turning ON a switch several times in succession is equivalent to
turn it on just once.

(1) Functions permanently switched ON or OFF by UPDATE

The following is a group of editing commands that provides a variety of
control functions during an editing session. It has a general format of

SKEYWORD
SKEYWORD

YES
NO

0o

where KEYWORD represents an option, and YES or NO to indicate whether such
option is to be switched ON or OFF. When a function is switched ON, the effect
is permanent for the remainder of the editing session or until the function is
explicitly turned OFF. When UPDATE is first called, all these switches are in
the OFF cordition.

Editing Control Function Commands 55

A. SARROWSYES; S$ARROW=NO When this option is turned on, all
control characters in the curpent line can be displaced by the TYPE
command as either “—character o% “—character, such as "L or "L, "I or
“I.

Example: Often, in entering a text line, the shift key of the terminal

is used to enter special symbols, such as "*" or "]". If by mistake, the
control key is used instead of the shift key, the mistake cannot be easily
detected because a control character will not be echo-printed. Observe the
following segment of an editing session:

UPDATE Commands Comments
>8TYPE
DIMENSION X(10) Printout seems OK
>8ARROW=YES
>4TYPE R ,
DIMENS [ION _ Hidden non-print character
>3$CHANGE /°1// Remove it,
DIMENSION X(10) It's gone.
>
B. SEDIT=YES; SEDIT=NO When a SEDIT=YES command is given, the
UPDATE automatically inputs and prints out a "$" sign in column one.
The user can thus enter the command keyword directly without the "$"
sign. Unless there is a very heavy volume of UPDATE commands given
in a session, SEDIT=YES is a command of convenience, sometimes of
questionable merit. When this option is switched on, UPDATE will
interpret every line as a command, because the computer already
receives a "$" sign automatically as the first character. It causes
a dilemma if you actually wants to insert a line. A command
SCREATE /TEXT/
will cause a line represented by TEXT to be inserted after the
current line, and may be used for insertion when the SEDIT switch is
on.
Example: A segment of editing involving $EDIT switch.
UPDATE Commands Comments
>8TYPE 2 EDIT switch is OFF.
C Illustrative Example
C Main Program Two lines typed out
>$EDIT=YES EDIT switch is now ON.
>sC WRITTEN BY T. W. SZE ' Attempt to insert a line;
?>$C'R/C WRITTEN BY T. W. SZE/ note error return
>$ "$" automatically given

56

CHAPTER 2 TEXT EDITOR

SECHO=YES; SECHO=NO When this switch is turned on, an

inserted line will be echo-printed on the terminal right after the
insertion. This switch is very useful when used in conjunction with
the case-shifting switch or the tab-setting switch,

Example: In the following example, a table is being constructed with
data in columns 11-12, 21-22 and 31-32, Tabs are set at 11, 21 and 31. The
$ECHO=YES switch will echo back entered data at the correct column positions.

UPDATE Commands _Comments
>$TAB=11, 21,31 Set TAB.
>8ECHO=YES Set ECHO switch.
>(Tab)23(tab)55(tab)92 Enter data.
23 55 92 Data echoed.
>(Tab)43(tab)12(tab) 88
43 12 28
>
D. S$ERROR=YES; SERROR=NO When this switch is turned on, an error

message will be reported on the terminal when an errcr is committed.
If the switch is turned off, only a "?" symbol is reported to
indicate an error.

Example: Suppose UPDATE is editing a file that contains 5 lines. The
contents of these 5 lines are 11, 22, 33, 44, and 55 respectively for each line
starting at column-1. The pointer is now at line No.3. Observe the errors made
in the editing session and error message received:

UPDATE Commands Comments
>$TYPE ... Display line 3.
33
>$CH/11/66/ ... To make a change,
?>SERROR=YES ... "?" symbol returned. Turn on
>$CH/11/66/ error message and try again.,
?Sequence not in current line -.. Meaning can't find a match
>$CH/33/66/ _ ... Try again.
66 .«.» Change verified
>$70/88/ ... Move pointer.
?Reached last line of text ... Can't find /88/.
>$WHERE .+« Check line number.
[5]
>$DUNE ..» Close the editing.
?Illegal command or structure ..» Incorrect spelling
>SDONE ... Try again.
Catalog name=>DATA.DAT ... Name DATA.DAT given
File Already existing file ... Duplicate name error
Catalog name=>DATAX.DAT ... Give another name.

1 blocks written on DATAX.DAT[115103,320571]

Editing Control Function Commands . 57

E. S$GAG=YES; $GAG=NO After the commands TO, TRAVEL, CHANGE,
SUBSTITULE are executed, the terminal automatically prints out the
new current line. While it serves as a convenience, it may become a
nuisance if there is too much output. To suppress the printing, use
SGAG=YES command, and the current line can only be printed out by an
explicit $TYPE command. This function can be cancelled by a $GAG=NO

command .
Example: To suppress unwanted verification printout:
> $SUBSTI. TUTE/ITEM1/ITEM2/ ‘ > 8GAG=YES
volume > $SUBSTITUTE/ITEM1/ITEM2/
of >
verification
printout
>
F. SLINE=YES; SLINE=NO When a SLINE=YES command is given, the

Tine number will be displayed along with the line text in all
terminal displays. .

Example: Observe the difference before and after the LINE switch is
turned on:

UPDATE Commands Comments

>8AT1; TYPE 3 Type out first 3 lines,
11 no line numbers.

22

33

> 8LINE=YES

>8AT1; TYPE 3 Type out first 3 lines
[1] 11 with their respective
[2] 22 line numbers.

[3] 33

>

G. SUPPER=YES, $UPPER=NO; SLOWER=YES, SLOW=NO
Many older or inexpensive terminals are built without capability of
entering or outputing lower-case letters. Hence, it 1is often
desirable to enter upper-case letters but store them as lower-cases.
Since both SUPPER and SLOWER swtiches affect the cases, the aggregate
effect depends on the combination of the two switches:

UPPER LOWER Aggregate Effect
NO NO Store as entered
YES NO Store as upper cases
NO YES Store as lower cases

YES YES store as entered

58 CHAPTER 2 TEXT EDITOR

The readers are reminded that all switches ar originally at OFF or NO
states. However, if there are large volume of text data containing
both upper and lower cases, such as a report or a thesis, it is not
practical to use this switch if one has a upper-case-only terminal.
For such needs, the users are referred to the utility program RUNOFF
(See Chapter 7) which contains many word-processing procedure
including case-control.

(2) Format of functions switched ON temporarily by UPDATE

Frequently, it is desirable to switch certain functions ON only
momentarily for the duration of one command. While the switch can always be
turned on or off by commands, it will be convenient to construct a
"spring-return" switch which will automatically be turned back to OFF after the
command is executed. UPDATE provides this convenience by a command format in
parenthesis:

SCOMMAND (SWITCH FUNCTION) Argument

SCOMMAND (FUNCTION-1) (FUNCTION-2) Argument
SCOMMAND (FUNCTION-1, FUNCTION-2) Argument

Examples: The following examples show equivalent commands:

quiyalent - Equivalent
SLINE=YES STYPE (LINE) 3 SERROR=YES S$TO (ERROR) /XYZ/
STYPE 3 STO/XYZ/
SLINE=NO SERROR=NO
Equivalent

SGA=YES $SU(GA, ER) /XX/YY/

SER=YES

$SU/XX/YY/

SGAG=NO

SERROR=NO

2.14 Editing Function Value-Setting Commands

In this group of commands, the common format is:

SCOMMAND = n

where "n" is an integer. The meaning of "n" is defined for each function, and
they are presented as follows:

A. SFACTOR=N This command will modify the size of the memory
"window" . Normally, there is no need to adjust the window. Only
when editing a very large file, there may be justification to adjust
the window to a larger size in order to reduce the overhead
file-copying when the pointer is backed outside the current window.

Editing Function Value-Setting Cbmmands , o 59

This was explained in a previous section in reference to Figure 2.1.
When $FACTOR is given without an argument, it is an inquiry for the
size of memory assigned behind the current line. A number typed out
on the terminal indicates the size in number of lines.

SLENGTH=N, and $SIZE=N Either of the commands will set the
length of each line to N characters long. If the text in a line is
less than N-character long, spaces after the last character are
padded with blanks. If the text in a line is more than N-character
long, the extra characters are simply truncated and removed.

Complications arise when there are tabs characters in a line.
Although each tab character counts. only as one character in the line
text, its effect is equal to multiple and variable blanks when it is
translated. Therefore, if the $LENGTH or $SIZE command is used to
prepare a fixed-length record file, it is desirable to let UPDATE
translate tabs into blanks by $TAB command, so that a correct number
of characters will be counted. The main usefulness of this command
is to construct a data file in which the record size is uniform for
every record, If SLENGTH command is applied without any argument, it
becomes an inquiry about the 1length of the current line. The
computer will respond with a number which is equal to the number of
characters (including blanks) in the current line.

SSAVE=N This is a safety feature that can be very useful

in long editing sessions. If the editing session in progress and the

System must be re-initialized due to crash, broken communication
linkage or any other emergency situation, all fruits of labor during
that editing session are lost. Or, when the connect-time of the
terminal expires, there will be no allowance for the user to finish
or to close the editing, and he is forced to sign off immediately.
The result of the current editing is also lost. If such contigency
may be likely, it is prudent for a user to apply a command $SAVE=N,
The following will then be accomplished:

When a command such as $SAVE=15 is issued, the output file E2
will be periodically closed, stored, and reopened to continue, for
every 15 lines output into the E2. Thus, in case of a system
failure, the user will in his disk a ™P file named E200xx.TMP that
contains the status of last save. This would cut the loss of
information to a small amount. The exact name of the T™P file is
reported on the user's terminal. Should the editing goes to the
completion successfully, that T™P file is deleted automatically. The
disadvantage of such safety measure is that it significantly slows
down the editing operation because of the extra file operations the
computer is required to do every N lines.

STAB=N1,n2, .. When the UPDATE is first called, the tab

settings are at the system default positions, namely at columns 9,
17, 25, etc (every 8 columns). To reset the values of tab setting to
a different set, use the command $TAB=nl,n2,... where "nl", "n2",
etc., are the new tab settings. When a tab key is subsequently
entered, it will be translated into multiple blanks, the number of
which depends on where the tab key is entered on the line., Since tab
key often causes problem in the count of characters in a line,
especially in the case of a fixed record-length file, it is useful to

60

use this command eveﬁ though the tab settings may be the same as the
system default.

The chief usefulness of this command is to prepare tables with
fixed columns, or to prepare a fixed column data file.

Example: Construct a roster of names with last names starting
on column-5 and initials starting on column—25:

s $TAB=5, 25

> (T)Doe(T)JD () =Tab key
> (T)Jones (TIMS

>IT)LL (T)JG

> (T)Kong (T)KK

> (T)Modzelewski (T)SW

>(T)Smith (T)YT

>8AT1; TYPE 6

Doe JD
Jones . MS
Li JG
Kong KK
Modzelewski SW
Smith ¥T
>
Example: Prepare a data file that has a FORTRAN format of 2(7X,I3).
>8TAB=8,18
>(T7)238(T) 23 (T)=TAB KEY
>(T) 12(T)856
>(T) 44(T)433
>8AT1; TYPE 3
234 23
12 856
44 433

2.15 Miscellaneous Editing Commands

(1) Commands regarding to current line position

A.

B.

SWHERE and SLINE Either of these two commands will cause the
absolute line number reported on the terminal.

SLENGTH This command will cause the length of the
current line in number 6f characters reported on the terminal. Also
refer to the command SLENGTH=n command. Note that S$LENGTH is to
inquire about the length, while $LENGTH=n is to set the length.

Miscellaneous Commands : _ 61

C.

(2)

$POSITION /TEXT1/TEXT2/.%. This command will type out the

positions (column numbers) of the first character of each of the
string TEXT1,TEXT2,... in the current line.

Insertion Commands While UPDATE will accept any input line

without the "$" sign in column 1 to be an inserted line, there are occasions
insertions may be made easier by the following commands:

A. OQVERLAY /TEXT/K, or $K /TEXT/ This command will place a string

of characters "TEXT" in the current line beginning at the Kth column
and replacing whatever was there before.

Example : Observe the effect of a command $4/ABCD/:

Before) After
1234567890 123ABCD890
B. S$PLACE/TEXT/K This command will insert the string "“TEXT"
in the current line starting at the Kth column. Unlike the $OVERLAY
command, the displaced characters do not disappear; they are merely
pushed back to the right to make room for the inserted string.
Example: Observe the effect of acommand SPLACE/ABCD/4 and compare it
with that of the previous example:
Before After
1234567890 123ABCD4567890
C. SREPLACE N When this command is given, the specified number
of line in the file beggining with the current line is deleted, and
the same number of lines subsequently typed on the terminal will take
their palces. This command is equivalent to a compounded command of
SDELETE(GAG) ; AT-1. The command S$REPLACE is equivalent to
SREPLACE 1.
Example: Observe the difference between REPLACE and DELETE commands:
SDELETE command SREPLACE command
>84T1; TYPE & >84T1; TYPE 5
11 11
22 22
33 33
44 44
55 55
>$AT3; DE(GAG) >$4T3; RE
XX XX
>SAT1; TYPE 5 >$AT1; TYPE b5
11 11
22 22
44 XX
XX 44

55 55

62 CHAPTER 2 TEXT EDITOR

>

(3) Length-manipulating commands

The end of a line is indicated by a carriage-return character. The
number of characters between two carriage return characters, not counting the
carriage return characters themselves, is the length of a line. ‘herefore, by
adding a carriage return some place in a line, it may be broken into two lines.
Conversely, if the carriage return at the end of a line is removed, that line is
joined with the next. In manipulating the length in this manner, caution should
be exercised regarding the blanks at the end of a line. Normally, when there
are trailing blanks in a line, UPDATE simply ignores them in order to conserve
storage spaces. Thus, the number of blanks at the joint should be carefully
observed, otherwise the space at the "seam" will be in error. The associated
commands are now discussed next.

A. JOIN command This command will remove the carriage return
character at the end of the current line, thereby join it with the
next line. Because all trailing blanks are deleted, any blanks
required at the seam must be provided by the leading blanks of the
secord line in the joining process.

B. $BREAK command This command will insert a carriage return
character into the current line, thereby braking it into two lines.
It has two formats:

SBREAK N

$BREAK /TEXT/

Roth "N" and "TEXT" indicate the end of the first line after the break. Thus,
the second line after the break will begin with the old (N+1)th column as its
first column, or the column immediately after the string "TEXT" as its first
column.

Examples: Observe the effect of $JOIN and $BREAK. Pay attention
specially to the "seam", before and after the operation.

>3TYPE 3 >8TYPE 2 SSTYPE 2

11 12345 67890 12345 67890
22 >3$BREAK/5/ >8BREAK/S5 /
33 12345 12345
>$JOIN 67890 67890

11 22 > >

> 8JOIN

11 2233

>

Auxiliary File Preparation R 63

SELECTED ADVANCED TOPICS IN UPDATE

The materials presented in the PRIMER (pp.37-42) are for the beginning
users. The materials presented in the COMMAMDS and PROCEDURES (pp.43-62) are
for the average users. The combined materials should be more than adequate for
most editing jobs. Occasionally, there may be special and frequent needs for
very sophisticated editing and therefore a more complicated set of commands may
be useful. However, unless you have special needs that require the commands in
the following sections, your time may be better invested by thoroughly
familiarizing yourself with the basic material and then going directly to the
SUMMARY sections (page 72). It should be noted that the objectives
accomplishable by the complex commands can also be accomplished by simpler
commands in more steps. Or, it may require getting on and off from UPDATE
several times.

Three topics will be presented: auxiliary files, conditional commands,
and editing programs.

2.16 Preparation and Use of Auxiliary Files

Sometimes, it is desirable to construct an auxiliary file which contains
a selected excerpts from a main file. Or, in creating a new file, certain of
its lines may be contributed by an already established file. Using only
commands presented so far, one can take the established file, delete all
unwanted lines, and the result would be an excerpt. In this section, some
special UPDATE commands are presented that will facilitate such a task.

(1) Auxiliary output file preparation

A main file is already in existence and has been called by UPDATE. It is
required now to make one or more auxiliary files which contain excerpts from the
main file. Three commands are provided for this purpose:

A. S$ONTO command This command will open an auxiliary file in
the disk into which excerpts of the main file will be transferred.
The opened file will be given a filename in the ONTO command format:

SONTO = standard file specification

where the standard file specification will contain a name and an
extension.

B. $PUT N command This command will transfer N lines, beginning
with the current line, from the main file to the auxiliary file
opened by a previous $ONTO command. If N is omitted in the command,
it is equivalent to S$PUT 1. Caution: After the lines are
transferred to the auxiliary file, those lines are no longer in the
main file. If the editing session is allowed to end with a normal
SEND or SFINISH command, the new main file will be the old file minus
those exerpts taken out. If you do not wish to disturb the old main
file, you must not let the editing session come to a normal end. As
soon as the auxiliary file preparation is completed and closed, apply
CTRL-C to abort the editing job.

64

C.

CHAPTER 2 TEXT EDITOR

$CLOSE command The command $ONTO opens an auxiliary file E3
as a working file; S$CIOSE command closes it and stores it away in
the disk.

Examples: Two auxiliary files X.DAT and Y.DAT are prepared composed of
excerpts from a main file SAMPLE.DAT. Observe the sequence of editing commands
and the "Before" and the "After" conditions of the files:

{BEFORE) ' (AFTER)
SAMPLE.DAT Editing Commands SAMPLE, DAT X.DAT Y.DAT
11 .UPDATE SAMPLE.DAT 44 22 11
22 11 77 33
33 >84T2; ONTO=X.DAT 55
44 >8PU2; AT+1; PU2; CLOSE 66
55 >8AT1; ONTO=Y.DAT
66 >8PU1; CLOSE; END
77 -
(BEFORE) (AFTER)
SAMPLE . DAT Editing Commands SAMPLE.DAT X.DAT Y.DAT
11 LUPDATE SAMPLE.,DAT 11 22 11
22 11 22 33
33 PS8AT2; ONTO=X,DAT 33 55
44 >3PU2; AT+1; PU2; CLOSE 44 66
55 >3AT1; ONTO=Y.DAT 55
66 >8PU1; CLOSE 66
77 >C 77
(2) Auxiliary input file operatign

Often, the input insertion to a file is preferred to be lines from an
existing file if it is already available., Presumably, that file has been
checked out already and it is not only convenient to copy those lines but also
reduces the chances of error.

A,

SFROM command While . the SONTO command specifies a

- T T) 0 . . .
destination auxiliary file, the S$FROM command specifies a source

file. Its command format is similar to that of the SONTO command:
SFROM = standard file specification

If this file resides in another user's disk area, his PPN should be a

part of the file specification, such as NAME.EXT [m,n].

SADVANCE command When the S$FROM command is first applied, its

pointer is positioned at line 1. The $ADVANCE n command is used to
position the pointer in the auxiliary file specified by the S$FROM
command. Although n is an unsigned integer, it is interpreted as a
relative line number.,

Auxiliary File Preparation 65

C. S$GET command Once the pointer of the auxiliary file is
positioned correctly in the auxiliary file, a command of $GET n will
transfer n lines, starting with the current line, from the aux111ary
file to “the main file, After the transfer, the lines in the
auxiliary file are not erased.

Sometimes, excerpts are taken from several auxiliary files. 1In changing
from one aux111ary file to another, it is necessary to dlsengage the old one
before engaging the new., For this reason, the command $FROM is designed to
disengage automatlcally the old auxiliary file and engage the new file. Each
time a file is engaged, the pointed will be positioned at line 1.

amples: A file SAMPLE.DAT and two auxiliary files X.DAT and Y.DAT
are all avallable in the disk storage. Their contents are as follows:
~-.File Contents —--="BEFORE"
SAMPLE DAT X.DAT Y.DAT
11 AA XX
22 BB Yy
33 cc 22
44 DD uu
55 EE w
66
77

Another file Z.DAT is now prepared by inserting certain lines from X.DAT
and Y.DAT into SAMPLE.DAT. This is shown below:

.. File Contents —-—— "AFTER" _

Editing Commands SAMPLE . DAT X.DAT Y.DAT Z.DAT _
JUPDATE SAMPLE.DAT 11 AA XX 11
11 22 BB YY 22
>$AT2,' FROM=X,DAT 33 CC YA BB
>SADVANCE 1; GET 2 44 DD uu CcC
>8AT/55/; FROM=Y.DAT 55 EE wW 33
>8AD2; GET 2: DONE 66 44
77 55
CATALOG NAME=>7, DAT VAA
1 BLOCK WRITTEN ON Z.DAT Uu
66

77 .

EXIT

2.17 Conditional Editing Commands

The UPDATE is enhanced in capabiltiy by being able to make "decision" on
which one of two alternate groups of editing commands are to be executed.

The basic structure of decision-making is as follows: First, a question
is asked to which a true-false answer is stored. This is accomplished by
issuing a $IF command. If the answer is affirmative, issuing a $THEN command
will execute a group of "execute-if-true" eiditng commands. (If the answer is

66 CHAPTER 2 TEXT EDITOR

negative, issuing a $THEN command will receive no response from them.) If the
answer is negative, issuing a S$ELSE command will execute a group of
"execute-if-false" editing commands. (Similarly, if the answer is affirmative,
issuing a $ELSE command will receive no response from them.) Such a structure is
simialr to the conditional structure in many language processors, and is
graphically illustrated in a flow chart as shown in Figure 2.2.

$1F command

One or
more
$THEN
One or more Command 1 commands
$ELSE commands T .

e e e Y
I Other Editing Commands

N |

Figure 2.2 Flow Chart of Conditional Editing Commands

(1) Single conditional commands

A. SIF command As illustrated in Figure 2.2, the S$IF command
asks a true-false question, and its answer is stored away, setting
the stage for subsequent actions of $THEN and SELSE commands. Since
the UPDATE has immediate information only on the current line, the
question asked must pertain either to the current line number or to
its content. Therefore, the formats of the $IF command are limited
to the following:

SIF format Question Asked B
$IF /TEXT/ Is there a string "TEXT" in the current line?
SIF /TEXT/K Is there a string "TEXT" in the current line

that begins at the Kth column?

SIF STEXTS Ignoring blanks, tabs, and difference between
upper and lower cases, is there a string
"TEXT" in the current line?

$IF n Is the current line number equal to n?

Conditional Commands ’ 67

Notice that the formats of the first three are very similar to those of
$TO commands.

B. STHEN and SELSE commands The STHEN and the $EISE commands will
specify and execute the alternate sets of commands depending on the
answers to a previously issued SIF command. The command format is as
follows:

STHEN /command 1; command 2; .../

$SELSE /command 1; command 2; .../

The commands between the delimiters "/" follow the rules of
compounded command structure, as discussed in section 2,10.

Example: SIF/FORMAT/7; THEN/WHERE; TYPE 2/;FISE/DELETE 2/

Function: Examine the current line, Does it have a string of characters

"FORMAT" beginning at the 7th column? If yes, print out the
line number and type two lines. If no, delete 2 lines.

(2) Nested conditional commands

Each of $THEN and SELSE command contains a set of embedded commands in
the compounded form. If the embedded commands contain another IF command, we
now have a nested structure. The following flow chart shows a typical example
of nested command structure:

r-———————--—»—————-————‘—-————T

First level 2nd level |
IF —_ IF 2nd level THEN' First level
™~ T | THEN

yes
no

2nd level

TYPE 2 | ELSE

The function of this flow chart is as follows: First examine the current line
to see if there is a character "A". 1If no, do nothing. If yes, then examine if
there is also a character "B" in the current line. If yes, type one line; if
no, type 2 lines. These functions may be accomplished by the following nested
command :

68 CHAPTER 2 TEXT EDITOR

SIF/A/; THEN/IF*B*; THEN*TYPE*; ELSE *TYPE ZZ
1 S e e e

L_.T_l [N |
First level IF —— First level actions
Second level IF . Liee—— Second level actions

In using a nested conditional structure, one should be cautioned about
the following:

A. The main advantage of the nested conditional structure is to
compress many editing commands into a single compounded one, so that its
execution will be more efficient. The UPDATE allows a maximum of ten nesting
levels. The main drawback is that constructing a nested structure is a very
error-prone process. Furthermore, more levels it goes into, less man-machine
interaction is available to the user. Therefore, even though the UPDATE is
machine-effective for high-level nesting, it is a poor practice for a user to go
much beyond the second level. Otherwise, an editing session will be very likely
degenerated into a debugging session for editing commands. An exception to this
advice 1is when one has some nested commands that will be used repeatedly by the
user or others. 1In such a case, it may be justifiable to spend a lot of time to
debug it and store it for later repeated use.

B. In addition to the logic involved, the most likely source of error
in a nest construction is the choice of delimiters., Normally, any special
symbol pair may be used as delimiters (or as "quotation marks"). Since a nested
structure is basically a compounded structure, the semicolons ";" must be
reserved to separate the commands., Moreover, there should be no ambiguity
between the command delimiters of IF, THEN, ELSE at different Ilevels.
Therefore, it is advisable to assign an unique delimiter symbol for each level.
See the following illustrative examples:

Example: Consider the following nested commands with their respecitve
interpretation of functions by means of flow chart:

{ SIF/A/; THEN/IF*B*/; THEN*TYPE*; ELSE *TYPE 2*/

Conditional Commands ' 69

$IF/A/; THEN/IF*B*; THEN*TYPE*/; ELSE *TYPE 2*

IF/2/; THEN/IF/B/; THEN/TYPE//; ELSE /TYPE 2/
Incorrect use of delimiters!

C. Several nested commands may be compounded together to form a
compounded nested command. In doing so, one must be careful about the correct
placement of the THEN, ELSE commands. Each time when a first-level IF command
is executed, its true-false answer replaces that obtained in a previous IF
command. The same goes for the subsequent level IF commands. Thus in the above
example, the actions of both statements may be combined by this statement:

SIF/A/; THEN/IF*B*; TH*TY*;EL*TY2*/;TH/IF*B* i TH*TY*/; EL*¥TY2*

(3) Conditional with logic connectives

Consider the following fully-developed two-level nested structure:

Accomplished by Placing

e T-{Box " Logic Connective the same actlions in Box
T Between Q1 & Q2 00 01 10 11
BOX 10 AND X
{:ﬁ_j OR X X X
Q2 T+ BOX 01 NAND X X X
Ny NOR X
[§Q§MQQJ LEGEND: T=TRUE XOR X X

F=FALSE

By placing identical editing actions in the appropriate boxes as shown in
the accompanying table, a logical connective between the answers to Ql and Q2
may be accomplished. For example, if one wants to type the 1line if either
character "A" or character "B" (or both) is present, he should place the TYPE
command in boxes 01, 10 and 11. The result is the following command:

$IF/3/; THEN/IF*B*; THEN *TYPE*; ELSE *TYPE*/; ELSE/IF*B*; THEN *TYPE*/
Actually, one can see that there is an INCLUSIVE OR, or logical wunion relation

existed in this case. The UPDATE processor has simplified the matter by
providing five commands specifying logic connectives: AND, OR, NAND, NOR and

70 CHAPTER 2 TEXT EDITOR

XOR., They are respectively for logic intersection, logic union, negation of
AND, negation of OR, and EXCLUSIVE OR. Thus, the above example can now be
written as:

SIF/A/; OR/B/; THEN /TYPE/
There is one important caution in using the 1logic connective commands.

Unlike the two-level nested commands, the second-level question does not
establish an independent answer (True-False) but modifies the Ffirst one.
Therefore, if the first-level question alone is to initiate some THEN or ELSE
action, it better be done before the answer is changed by the logical connective
commands. Observe the difference between the following two editing commands:

$IF/A/; EISE /TYPE/; OR /B/; THEN /DELETE/

$IF/A/; OR /B/; ELSE/TYPE/; THEN /DELETE/

The difference would be the execution of ELSE/TYPE/ segment.

2.18 Editing Programs

In the UPDATE processor, the compounded command structure enables a
series of command executions in one pass. The TRAVEL, GO, and STOP commands
result in the looping capability. The conditional command group IF, THEN, ELSE,
and logic connectives yield the decision-making capability. Combining all of
these, one has the makings of a complete stored editing program. However, it is
not always desirable to construct editing programs for one-~shot usage as they
are very wasteful of user resources. Moreover, accuracy of editing requires a
high degree of user-machine interaction which a complete editing program will
deprive. Therefore, construction of editing programs should ke limited to
applications of wide and frequent usages.

Two such program are given as illustrative examples:

Example: Given a FORTRAN program, design an editing program that will
print out all FORMAT statements. Assume all FORMAT statements have the keyword
"FORMAT" beginning at column 7, but some of the FORMAT statement may have
continuation cards.

The logic of the program may be described by means of a flow chart shown
on the next page.

In the compounded structure form, the resulting program (one line) is as
follows:

$GAG=YES ; AT/FORMAT/7; TYPE; TR+1; IF/C/1;0R/*/1; THEN/GO/; IF/ /6;
THEN/AT-1; AT'FORMAT'7/; TYPE; GO

After this command is completed, all FORMAT statements will have been typed out
on the user's terminal. An error report sign "?" will also be typed out,
because when the search reaches the end of file, the $STR+1 command will still
attempt to advance 1 1line. If the above program has PUT commands instead of
TYPE commands (with ONTO command issued previously), this program would have
prepared an auxiliary file that contains all FORMAT statements in the FORTRAN

program.

Editing Programs 71

.| Search for /FORMAT/7. -
When found, type It.

} L]

‘ Advance 1 line

GO

Conituation es ,(Backup 1 line;
Card? search for /FORMAT/7

Type out the |ine f«—— v~--J

Example: The equivalence between the 026 and the 029 key punch code is
shown below:

026 Punch 029 Punch
=
& +
@ t
% (
<)

Other characters have the same punch codes,
STR+1; IF/ /;TH/AL. .;AT-1/;O0R/&/;TH/AL.&.+.;AT-1/0R/@/;TH/AL.@." .}
AT—l.;OR/%/;TH/AL.%.(.;AT—l/;OR/(/;TH/AL.<.).; T-1/;GO
Since a single-line compounded command is limited to a maximum of 150

characters, two-letter abbreviations are used for all UPDATE keywords in the
above command.

72 CHAPTER 2 TEXT EDITOR

A SUMMARY OF FILE MANAGEMENT BY UPDATE

2.19 File management Tasks

(1) To create a new file from a terminal

When UPDATE receives the input file name, the disk storage directory is
searched. when the file is found, the file is loaded into the input working
file. :

However, if the file name supplied by the user is null (represented by a
carriage return and nothing else), or if the file does not exist for the name
given, the input working file is entirely blank. Thus, the only information
that may go to the output working file would be from the terminal or from other
stored files by insertion mode. 1In this way, an entirely new file may be
created from the user's terminal and stored in the disk.

(2) To create a new file by batch

The effectiveness of UPDATE to do editing job 1s mainly because its
man-machine interaction. Therefore, UPDATE normally is not suitable for BATCH
jobs. However, if the source materials are in punched card form, a file may be
created from these cards by UPDATE submitted in BATCH.

Suppose we wish to store a deck of data cards in disk and will name the
file as DATA.DAT. First, a batch deck of cards is prepared that contains the
following. Either will do:

| SPASSWORD (password) | | $PASSWORD (password)
| .UPDATE DATA.DAT |, UPDATE

| (a blank card)

data data
deck deck
SEOJ | DATA.DAT =
S$EQJ

In the above deck setup, the single-$ cards are BATCH commands, and those
double~$ cards are UPDATE commands read by BATCH, For more details on
Multiprogram Batch, see Chapter 9.

After the cards are prepared, read the cards in at a RJE card reader.
The Jjob will be executed by the computer, and the file DATA.DAT is thus created
from the cards. For card input used in this way, the same precaution should be
exercised that there should be no "$" character in the first column in the data
card deck.

File Management by UPDATE

(3) To copy a file

73

A file may be duplicated.and stored in the user's disk area by using the

UPDATE in the folowing way:
JUPDATE NAME.EXT[115103,320571]

(UPDATE prints out the first line of NAME,EXT)
>$DONE

CATALOG NAME=> NEW.EXT

This is equivalnet to a monitor command of:

.COPY NEW.EXT = NAME.EXT'[115103,320571]

(4) To merge several files into one

For example, if three files D1.FOR, D2.FOR and D3.FOR are to be merged

into one DX.FOR, it can be accomplished in the follwoing way:

LUPDATE D1,FOR

(UPDATE prints out the first line of D1,FOR)
>8AT §

>8INPUT= D2,FOR

SSINPUT= D3,FOR

>8DONE

CATALOG NAME=>DX, F'OR

This is equivalent to applying the monitor command:

.COPY DX.FOR = D1.FOR,D2.FOR,D3.FOR

(5) To prepare an auxiliary file from a source file

The following is an example where an auxiliary file FORMAT.FOR is
prepared by extracting all FORMAT statements (some of which may be multiple-line
statements) from the FORTRAN file SAMPLE.FOR. Assume that all keyword FORMAT of

the FORMAT statements starts at the 7th column.

JUDPATE SAMPLE,FOR

(UPDATE prints out the first line of SAMPLE.FOR)

>SBEFORE

>4 (A=blank)

>80NTO=FORMAT. FOR

>$GAG=YE’S,‘AT/FORMAT/7;PU;TH+1;IF/C‘/1,'OR/*/Z;TH/GO/;IF/ /6 one
TH/AT-1;at '"FORMAT'7/; PU; GO Tine

2>8CLOSE

S4C ?7=error indication when reaching the end

of file and still wanting to "GO"

The logic of the long command line in this example was discussed

2.18.

in Section

74 CHAPTER 2 TEXT EDITOR

2.20 Examples of File Editing

Two examples of editing a complete file will be given using the UPDATE
editor. The first one consists of entirely text eidting, while the second one
is a stored program in FORTRAN. The following points will be helpful:

(1) A careful proof-reading of the old text is essential. It is also
desirable to do the proof-reading "off-line" to conserve valuable terminal time.

(2) To increase the speed and efficiency of editing (and therefore to
reduce time and cost), all corrections should be marked on the listing, together
with their line numbers if appropriate.

(3) Moving from one record to another, the normal operation of the UPDATE
editior is to go forward. In fact, backing up the pointer to some previous line
may sometimes be costly because it will involve file re-writing and re-reading.
Therefore, backing up is generally an inefficient process and should be used
sparingly in view of processor efficiency. On the other hand, since deletions
and insertions of lines during editing will change the line numbers of all lines
of text beyond the pointer, it will be progressively difficult to locate the
desired line by absolute line numbers., For this reason, in editing the text by
its absolute line numbers, it is sometimes desirable that the editing be done in
the reverse direction, starting from the end of the file and working backwards
toward the front. In this manner, the deletion and insertion of lines will not
affect the line numbers of the portions of the file not yet edited. Here we are
trading off machine and processor efficiency for user convenience. This process
is desirable only if the user has made preparations as outlined in (1) and (2).
To improve processor efficiency, he can also readjust and enlarge the window by
the $FACTOR command.

(4) Only the first two letters of any UPDATE command word need be given.
Incorrect spelling of command is tolerated as long as the first two letters are
spelled correctly.

Example 1: To edit the text taken from the 8School of Engineering
Bulletin, University of Pittsburgh. The draft of text on disk file TEXT.EDT
along with the revisions on the draft appears as follows:

THE MICHAREL L. BENEDUM HALL OF ENGINEERING

STDUENTS ENROLED IN THE SCHOOOL OF ENGINEERING, UNIVER TY OF
PITTSBURGH, RECEIVE THEIR EDUCATION IN ONE OF THE COUNTRY'S MOST
MODERNAND BEST EQUIPPED ENGINEERING BUILDINGS, THE MICHARL L. BENNEDUM
HALL OF ENGINEERING. THE BUILDING COMPLEXX IS NAMED IN HONOR OF
MICHAEL L. ENEDUM, A PIONEER IN THE OIL INDUSTRY AND CO-FOUNDER OF
MICHAEL L. ENEDUM, A PIONEER IN THE OIL INDUSTRY AND CO-FOUNDER OF
THE BENEDUM TREE OIL COMPNAY. A GRANT FROM THE CLAUDE WORTHINGI'ON
FOUNDATION ENABLED THE UNIVERSITY TO PURCHASE ON WHICH THE ENGINEERS
COMPLEX IS BUILT.

The following is a printout of the editing session:

Examples

.UPDATE TEXT.EDIT
THE MICHAREL L. BENEDUM HALL OF ENGINEERING
>SCH/T/ T/R// :
THE MICHAEL I, BENEDUM HALL OF ENGINEERING

>8AT+2;CH/I,/LL/000/00/R TY/RSITY/

STUDENTS ENROLLED IN THE SCHOOL OF ENGINEERING, UNIVERSITY OF
>$AT+2; CH/AND/ AND/ARL/AEL/NN/N/
MODERN AND BEST EQUIPPED ENGINEERING BUILDINGS, THE MICHAEL L. BENEDUM
S8AT+1; CH/X//
HALL OF ENGINEERING. THE BUILDING COMPLEX IS NAMED IN HONOR OF
>$AT+1; CH/EN/BEN/
MICHAEL L. BENEDUM, A PIONEER IN THE OIL INDUSTRY AND CO-FOUNDER OF
>3AT+1; DELETE
THE BENEDUM TREES OIL, COMPANY. A GRANT FROM THE CLAUDE WORTHINGTON
>8AT+1; CH/CHASE/CHASE THE LAND/ENGINEERS//
FOUNDATION ENABLED THE UNIVERSITY TO PURCHASE THE LAND ON WHICH THE
»8AT+1; PLACE/ENGINEERING /1
ENGINEERING COMPLEX IS BUILT.
SSEND
>
1 Blocks written on TEXT.EDI[33,33]

EXIT

The edited file is shown below:
THE MICHAEL L. BENEDUM HALL OF ENGINEERING

STUDENTS ENROLLED IN THE SCHOOL OF ENGINEERING, UNIVERSITY OF
PITTSBURGH, RECEIVE THEIR EDUCATION IN ONE OF THE COUNTRY'S MOST
MODERN AND BEST EQUIPPED ENGINEERING BUILDING, THE MICHAEL L. BENEDUM
HALL OF ENGINEERING. THE BULDING COMPLEX IS NAMED IN HONOR OF
MICHAEL L. BENEDUM, A PIONEER IN THE OIL INDUSTRY AND CO-FOUNDER OF
THE BENEDUM TREES OIL COMPANY, A GRANT FROM THE CLAUDE WORTHINGION
FOUNDATION ENABLED THE UNIVERSITY TO PURCHASE THE LAND ON WHICH THE
ENGINEERING COMPLEX IS BUILT.

Example: To edit a stored FORTRAN program. It is suggested that
readers follow the running comments marked on the printout.

.UPDATE SAMPLE.FOR
[CREATE NEW FILE)
> SAMPLE PROBLEM FOR THE TIME-SHARING NOTES
READ(5,10)A,B,C,D,X1
10 FORMAT(F20.7)
1 X2=X1-(A*X1**3+B*XIA*2+C*X14D) / (8, *A*X1**24+2, *X1+D)
WRITE(6,10)X2
TF(ABS((X1-X2)/X2-.001)3,3,2
2 X1=X2
GO TO 10
3 WRITE(6,11)X2
11 FORMAT(/' THE REAL ROOT = ',F20.7)
STOP
END

VVVVVVVVYVYVYV

>Swh
12

75

76 CHAPTER 2

> $AT1; TYPE 12

C SAMPLE PROBLEM FOR THE TIME-SHARING NOTES
READ(5,10)A,B,C,D,X1
10 FORMAT(F20.7)
1 X2=X1— (A*X1**34+B*X1**24C*X14D) (3 ,*A*¥K1**2+2,*X14D)
WRITE (6,10) X2
IF (ABS ((X1-x2) /X2-.001)3,3,2
2 X1=8X .
GO TO 10
3 WRITE(6,11)X2
11 FORMAT(/' THE REAL ROOT = ',F20.7)
STOP

END
> $T04
1 X2=X1- (A*X1**3+B¥X1**2+C*X14D) (3, *A*X1**2+2.*X14D)
> $CHANGE $D)(3,8D)/3.82.82. *BSDSCS
1 X2=X1- (A*X1**3+B*X1**2+C*X14D) /(3 . *A¥X1**2+2 ,*B*X1+4C)
> 84T+1; CH/W/ W/
WRITE(6,10)X2
> 8AT+1; CH/X2-/X2)-/
IF (ABS ((X1-X2) /X2-.001)3,3,2
> 8AT+1; CH/SX/X2/
2 X1=X2
> $4T+1; CH/O//
G TO 1
> $8END
1 Blocks written on SAMPLE.FOR{33,33]

EXIT

. TYPE SAMPLE.FOR
C SAMPLE PROBLEM FOR THE TIME-SHARING NOTES
READ(5,10)A,B,C,D,X1
10 FORMAT(F20.7)
1 X2=X1- (A¥X1**3+B*X1**24C*X14D) /(3. *A¥X1**2+2 ,*B*X14C)
WRITE (6,10) X2
IF (ABS ((X1-X2)/X2-.001)3,3,2
2 X1=X2
GO TO 1
3 WRITE(6,11)X2
11 FORMAT(/' THE REAL ROOT = ',F20.7)
STOP
END

TEXT EDITOR

gxercises 77

EXERCISES

1. (a) Enter the following FORTRAN program in your disk by using UPDATE and
name the file as PROB1.FOR:

C PROBLEM NO. 1
DIMENSION K(10)
DO 5 1=1,10

5 K(I)=I**2

10 FORMAT (217)
STOP
END

Purposely make some errors in your typing. For example, omit some commas
and misspell a few words.
(b) When you are back at the monitor level, execute the incorrect program by
a command:
.EXECUTE PROB1.FOR

and observe the proceedings.

(c) Make appropriate corrections, and execute again. Repeat until you get
the program letter perfect.

2. What would each of the following UPDATE fragments do?

(a) $AT 1 (b) SAT 1 (c) $AT 1
$SUB/XX/YY/ STR/XX/ STR/XX/
SCH/XX/YY/ SCH/XX/YY/
SAT -1 $GO
$GO

(d) $SUB/READ(5,/READ(1,/
(e) STR+1;IF/READ/7;THEN/TYPE (LI)/;GO
(£) SONTO= READ,FOR

$TR+1; IF/READ/7; THEN/PUT/; GO
$SCLOSE

3. Three different compounded MOVE commands are given:
SMOVE; HERE
SMOVE; AT-1; HERE
SMOVE; ATS; HERE

For each of these three commands, answer the following questions:

78

9.

CHAPTER 2 TEXT EDITOR

(a) Where is the line moved to?

{b) Where will be the pointer after the move?

Verify your answers to problem 3 by actually setting up a £file, observing
the BEFORE and AFTER of each of the above three commands.

Enter Lincoln's Gettisburg Address as a file and name it as ABE.DOC.
Correct any error in the file.

For each line of ABE.DOC prepared in problem 5, edit the text so that the
following results are obtained:

a. Set the left margin at column 1; the right margin at column 45.
b, The first line of a new paragraph is indented 5 spaces.
¢. Right justify by adding spaces between words.

d. Space all punctuations so that there is one space after each comma or
semicolon, and 3 spaces after each period.

After copying the file SYS:NEWS (see Exercise(3), Chapter 1) into your own
disk area, use UPDATE and with one compounded instruction, search and type
out all first lines of news items that were dated in 1980.

The instructor will furnish for this exercise a long FORTRAN program that
contains many FORMAT, READ, WRITE and CALL statements. Prepare four
auxiliary files that will contain the following information:

(a) File FORMAT.FOR: a record of all FORMAT statements

(b) File READ.FOR: a record of all READ statements

(c) File WRITE.FOR: a record of all WRITE statements

{(d) File SUBR.FOR: a record of all subroutine CALL statements

For a simple case, make the following assumptions:

(1) All characters are upper cases.
(2) All statement keywords pegin on column 7.
(3) No continuation statement.

For a more challeging case of problem 8, make the following assumptions and
then prepare the required auxiliary files:

(1) Mixed upper and lower cases in the FORTRAN program file.

(2) A statement may begin anywhere between column-7 ard column-72.

(3) Some of the READ, WRITE or CALL statements may be imbedded in an
IF statement, e.g., IF(I.EQ.1)READ(5,56)X

(4) There may be continuation statements.

You may modify this problem and generate a problem a varying degree of
difficulty by selecting one or more of these assumptions.

[IPDATE Exercises : o 79

10.

11.

The source program in FORTRAN-10 on DEC System—-10 allows a special use of
the tab key (or the CTRL-I character) to skip all or part of the label
field. The purpose is to use a tab-character (1 character) to replace
multiple spaces (multiple characters) “to save storage space. Rules of
interpreting a FORTRAN-10 statement using a tab in the initial field are as
follows:

(1) If the tab is immediately followed by one of the digits 1 through 9,
that line 1is a continuation 1line of the previous one. The non-zero
numeric character following the tab is considered in column—6.

(2) Otherwise, the line is an initial line of a FORTRAN statement, and the
character following a tab is considered to be in column-7.
For example, both of the following versions of a source program are
acceptable by DEC System-10:

Version 1 Version 2
C SAMPLE PROBLEM C SAMPLE PROBLEM
bbbbbbDO 10 I=1,20 (T)DO 10 I=1,20
bbbbblbK=1*#*3 (T)K=L1**3
bbblU TYPE 20, I, 10(T)TYPE 20, I,
bbbbblK (T) 1K
bbb20 FORMAT (2I12) 20 (T) FORMAT (2112)
bbbbbbEND . (T) END
b=blank space (T)=tab

For a FORTRAN-10 program entered by using the tab-key storage—saving
technique, repeat problems 8 and 9.

For each of the following functions, write a single-line compounded UPDATE
command to accomplish it:

(1) To type out only those lines in a FORTRAN program that have lengths
longer than 72 columns. The printout should contain absolute line
numbers, line lengths, and the line itself., Do not print out all lines.

(2) To insert the word EXERCISE in columns 73-80 of every line in a FORTRAN
program.

(3) to print out all subroutine call statements in a FORTRAN program.
(4) To print out all FORMAT statements.

(5) To print out all COMMENT statements.

80

CHAPTER 2 TEXT EDITOR

REFERENCES

PTSS TEXT EDITOR, Class Notes of a Freshman Course "Engineering Analysis
2", T. W. Sze, University of Pittsburgh, Pittsburgh, Pennsylvania;
1969.

A PRIMER FOR PITT TIME-SHARING SYSTEM (PTSS), Chapter 5, Text Editor,
T. W. Sze, University of Pittsburgh, Pittshurgh, Pennsylvania; 1970.

INTRODUCTION TO A TIME-SHARING SYSTEM, Chapter 6, Text Editor, T. W. Sze,
University of Pittsburgh, Pittsburgh, Pennsylvania; 1972,

UPDATE Reference Card, Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; June, 1979.

UPDATE/X — UNIVERSITY OF PITTSBURGH DATA AND TEXT EDITOR, Computer Center,
University of Pittsburgh, Pittsburgh, Pennsylvania; 1976.

INTRODUCTION TO DEC SYSTEM-10: TIME-SHARING AND BATCH, T. W. Sze, Chapter
6, Text Editor, University of Pittsburgh, Pittsburgh, Pennsylvania;
First Edition, 1974; Second Edition, 1977,

UPDATE, Gerald W. Bradley, Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; 1979.

CHAPTER 3

FORTRAN-10

FORTRAN is the most widely studied and used
programming language in the United States. Therefore,
this chapter is prepared with the assumption that the
readers already have some background knowledge of the
language. For those who are not familiar with the
language, please consult any one of many FORTRAN
manuals available. Two typical ones are:

PROGRAMMING WITH FORTRAN, Byron S. Gottfried, Quantum
Publishers, New York, 1972

PROBLEM SOLVING AND STRUCTURED PROGRAMMING IN FORTRAN,
F. L. Friedman & E. B. Koffman, Addison-Wesley
Publishing, Reading, Massachusetts; 1977

INTRODUCTION

There are not just a few versions of FORTRAN; there are dozens. Even on
the DEC System—10 alone, there are several versions available. In attempting to
unify all versions of FORTRAN developed in the computer industry, the American
National Standards Institute (ANSI) in 1966 set up a standard for FORTRAN, now
known as the "1966 ANSI Standard."* However, what has happened since is that the
computer industry has used the Standard only as a minimum standard, and every
company has extended far beyond that minimum for their own versions of the
FORTRAN language. Unfortunately, while the ANSI standard part is uniform, the
enhanced parts among different versions are not. Programs written in one
enhanced version may require some modifications if run on a machine using a
different compiler. The version of FORTRAN covered in this chapter, called
FORTRAN-10 by the Digital Equipment Corporation, is a powerful superset of the
ANSI standard version. A summary of FORTRAN-10 will be included in this
chapter., However, readers are encouraged to seek more details from References 3
and 4.

*USA Standard FORTRAN (x3.9-1966), American National Standards Institute, 1966
81

82 CHAPTER 3 FORTRAN-10

RUNNING A FORTRAN PROGRAM ON DEC SYSTEM-10

After a FORTRAN program is written and thoroughly checked for its logic,
running the program will require two major steps:

(1) To enter and store the FORTRAN program as a disk file.
(2) To compile, load, and execute the stored program.

The following discussion will be devoted to these two steps.

3.1 To Enter and Store a FORTRAN Program

In the DEC System-10 , the source program in FORTRAN, ALGOL, COBOL or
MACRO should first be stored as a disk file because the most common way of
execution is for the System to search in the disk for a specified program.

There are a number of utility programs available by which a user can
enter and store his FORTRAN program. By far the best way is to use the UPDATE
editor, which enables a user full editing facilities while entering a program.
The details of UPDATE are given in Chapter 2. In this chapter, only the
procedure relating to the entering of a FORTRAN program will be demonstrated.

As an illustration, let us consider two programs: one containing just
the main program, and the other a main program plus a subroutine. The program
listings are as follows:

Program 1 Program 2
C SAMPLE PROGRAM 1 C SAMPLE PROGRAM 2, WITH SUBROUTINE
po 10 1=1,10 ACCEPT 10, M,N
K=I**3 10 FPORMAT (I3)
10 TYPE 20, I,K CALL CUBE (M,N)
20 FORMAT(2110) END

C SUBROUTINE FOR SAMPLE PROGRAM 2

SUBROUTINE CUBE (M,N)
DO 10 I=M,N
K=1**3

10 TYPE 20, I,K

20 FORMAT (2110)
RETURN
END

(1) To enter program by the UPDATE editor

The UPDATE editor was originally developed for the Pitt Time-Sharing
system (PTSS) using an IBM/360 Model 50 computer, and has since been adapted for
use on the DEC System-10. It enables a user not only to enter and store a
program, but also to correct errors and to edit. The following shows a typical
session with the UPDATE editor. The user's typings are shown in italics.

To Enter and Store a FORTRAN Program ' » 83

At a User's Terminal Comments
.R UPDATE Call for the editor
INPUT=>)) = RETURN key of terminal
>C SAMPLE PROGRAM 1
> po 10 I=1,20
> =T*%3 > = prompt from the computer
> 10 TYPE 20, I,K
> 20 FORMAT(2I12) Enter FORTRAN progran
> END
>$DONE

CATAIOG NAME=>PRGI.FOR
6 BIOCKS WRITTEN ON PRG1.FOR[115103,320571]

In a similar way, Program 2 may be entered and stored. Let us assume
that the main program of Program 2 is stored and named as PRG2.FOR and its
subroutine as CUBE.FOR.

If a program requires several subroutines, each subroutine may be entered
and stored separately as a single file bearing a different name, or they may be
combined into one file with one filename. At this point of the illustration,
three files have been stored and they are PRGL.FOR, PRG2.FOR and CUBE.FOR. A
listing of the programs can be made by using a monitor command:

.TYPE PRG1.FOR, PRG2,FOR, CUBE.FOR
The listings produced may be used as records or for proof-reading.

If the listing shows that the programs have been correctly entered, the
programs are ready for compiling, loading and execution.

(2) To enter program via punch cards

The wa& to enter and store a program deck is to submit it by a batch job.
Details of batch jobs are given in Chapter 9. Repeating the example above, the
control file deck is first assembled as follows:

$JOB [115103,320571] $JOB [115103,320571]
$SPASSWORD DEBBIE SPASSWORD STEVE
$DECK PRGL.FOR .UPDATE PRGL.FOR
Program 1 deck Program 1 deck
SDECK PRG2.FOR $SEND
Main program deck .UPDATE PRG2.FOR
Program 2 Main program deck
$DECK CUBE.FOR Program 2
Subroutine deck SSEND
SEOD .UPDATE CUBE.FOR
SEOJ Subroutine deck
$SEND
SEQJ

There is often a need to enter and store a FORTRAN program via a punch
card deck. For example, a card deck may have already been prepared. Perhaps
the terminals are not available, Although there are more terminals than key
punches, the latter are often less in demand and hence more available. After

84 CHAPTER 3 FORTRAN-10

the deck is assembled as shown in either makeup, the assembled deck is read by a
system card reader, and the batch job is submitted. After the job is executed,
there should be files PRGl.FOR, PRG2.FOR and CUBE.FOR in this user's disk area.

3.2 To Edit a Stored FORTRAN Program

If any typographical error, missing lines, or duplications are found in
the listings of stored programs, the UPDATE editor may be used to make
corrections. Suppose the PRG2.FCOR listing is produced as follows and errors
were found and marked as shown below:

C SAMH@Q}PROGRAM 2, WITH SUBROUTINE
CCEPT 10, M,N

Mova ofev

ome space ~ LOFORMAT(I3)
CALL CUBE(M,N
END quj

To make corrections, the UPDATE editor may be used either on a terminal
or in a batch job:

(1) Using UPDATE at a terminal

The following represents a terminal session of error correction:

JUPDATE PRG2.FOR

C SAMPEL PROGRAM 2, WITH SUBROUTINE
>SCHANGE/PEL/PLE/

C SAMPLE PROGRAM 2, WITH SUBROUTINE
>84AT+2; CHANGE/FOR/ FOR/

10 FORMAT (13)
>S$AT+1; CHANGE/M,N/M,N)/

CALL CUBE (M,N)
> END
>SEND

After the editing session, the listing should again be typed out for a
final verification.

(2) Using UPDATE in a batch job

Assemble a batch job deck as follows. Notice that the order of the cards
and their contents are identical to those input lines in the terminal session,
with the exception that an UPDATE $~command should be punched as a $$-card,

$JOB [115103,320571]

SPASSWORD DEBBIE

.UPDATE PRGZ.FOR -

SSCHANGE,/PEL/PLE/

SSAT+2; CHANGE/FOR/ FOR/

SSAT+1; CHANGE/M,N/M,N)/
END

SSEND

$EOJ

To Compile, Ioad and Execute a FORTRAN P 85

There is, of course, a third way: Noting the errors on PRG2.FOR, repunch
the incorrect cards. Insert any missing card. Resubmit the corrected deck as a
new batch job., In the batch deck, include a command first to delete the old
PRG2,FOR before storing the new PRG2.

3.3 To Compile, Load and Execute a Stored FORTRAN Program

The sequence of executing a FORTRAN-10 program is as follows:

(1) To compile the specified source programs and store the binary object
or relocatable files (with extensions of REL) in the disk.

(2) To load the REL files of the main program and all subprograms or
subfunction programs called by the program into the core memory.

(3) To begin the execution of the loaded object program from an address
determined by the compiler and the loader.

All these steps can be accomplished in sequence by a single monitor
command :

EXECUTE list

where "list" is a list of all FORTRAN programs {(or their REL files if available)
including any other subprogram files needed for execution in one problem, If a
program belongs to another user but is accessible, the PPN of the owner should
be specified along with the filename. If the file is on tape which is already
mounted, then the device name should also be specified., Thus, to execute
Programs 1 and 2 respectively, issue the following commands:

LXECUTE PRG1,FOR
L.EXECUTE PRG2.FOR, CUBE.FOR

When an EXECUIE command is issued, the computer will go throuwgh a
sequence of compiling, loading and execution. The sequence of operations to
carry out the command EXECUTE PRG2.FOR, CUBE.FOR is represented by the flow
chart shown in Figure 3.1. Note particularly the processing logic by which any
unnecessary compiling is avoided.

_ When a source FORTRAN program is compiled for the first time, a REL file
is created and stored. In the user's file directory, pertinent information are
also stored, such as the creation time accurate to the minute. When the program
is executed again and if the program has not been modified in any way, the REL
file is still valid, and compiling again would be superfluous. On the other
hand, if the program has been modified since the last compiling, then the
existing REL file is not valid, and compiling again during the next execution is
necessary. The processing logic does it by comparing the creation time between
the source porgram and its REL file. If the creation time of the source is
earlier, then the REL file is still valid. If the creation time of the source
is later, then the REL is not valid, and compiling should be done again. After
a new REL file 1is created by the re~compiling, its creation time is updated
also. This logic is handled by the System and the user is spared the decision.
Execution of Program 1 and Program 2 are given below as illustration:

CHAPTER 3 FORTRAN-10

Search in disk for
the files
PRG2.FOR
CUBE.FOR
Are all fifes listed Are the Are creation time of
present and avallable| yes following files |yes|flles PRG2.REL,CUBE.REL| yes
(in case belogning avalfable: newer than PRG2.FOR &
to another PPN)? PRG2.REL CUBE.FOR creation time
CUBE.REL respectively? |
N nol no ;
— Y r '
Diagnostic Complle programs and store the
message - | REL flles as new or updated _
ERROR STOP PRGZ.REL or CUBE.REL. |
‘m~—~l~~—ﬁ—-———‘ Diagnostic ;
Any compli{ing error? message & |
— ERROR STOP

no

——
Load PRG2.REL & CUBE.REL and
any subprograms called by them E-
from the System Into user®s core.

o

Are al! subprograms |no Error
available? T message &
ERROR STOP
yes

Start execution of PRGZ.REL
and CUBE.REL
_

J—
N

e X Diagnostic
[Any axecution error? Y83 message &

ERROR STOP

no

Success-
ful comple-
tion of
execution

Figure 3.1 Sequence of Operations for "EXECUTE PRG2.FOR,CUBE.FOR"™

To Compile, Load and Execute a FORTRAN Program 87

FORTRAN 5A(621): PRGLl.FOR FORTRAN 5A(621): PRG2.FOR
MAIN. OCTAL PROG SIZE=43 . MAIN. OCTAL PROG SIZE=35
LINK: Loading FORTRAN 5A(621): CUBE.FOR
[LNKXCT PRGl execution] CUBE OCTAL PROG SIZE=52
LINK: Loading
1 1 [INKXCT execution]
2 8 >
3 27 >
4 64 . 1 1
5 125 2 8
6 216 3 27
7 343 4 64
8 512 5 125
9 729 6 216
10 1000 7 343
End of execution FOROTS 5B(1001) End of execution FOROTS 58 (1001)
CPU time: 0.08 Elapsed time: 1.05 CPU time: 0.05 Elapsed time: 7.50
EXIT EXIT

The three stages of compiling, ‘loading and execution of a FORTRAN-10
program are carried out by a single EXECUTE command. These steps can also be
carried out one at a time.

The monitor command COMPILE list will compile the FORTRAN files in the
list and store the generated REL files, giving them the same filename but with
an extension of REL,

The monitor command LOAD Ii{st will compile the programs, store the
generated REL files, and also load them into the core.

The execution of the stored FORTRAN programs can also be accomplished by
submitting the EXECUTE commands in cards. The following are two card assemblies
for the batch jobs of executing Program 1 and Program 2:

$JOB [115103,320571] $JOB[115103,320571]
$PASSWORD DEBBIE $PASSWORD DEBBIE
.EXECUTE PRG1.FOR .EXECUTE PRG2.FOR,CUBE.FOR
SEQJ 1
7
SEOJ

Once the compiling is done on a FORTRAN program, its object program is
stored on the disk, and subsequent execution of the same program will bypass the
compiling stage. In this manner, unnecessary compiling may be avoided.
However, if the FORTRAN program belongs to another PPN, a user should not only
ascertain if the FORTRAN program is protected against his access, but he should
also determine whether he can gain access to a compiled REL file. If a REl file
is already available and accessible, the command EXECUTE will directly access
the REL files. 1In many cases, the source programs are proprietary, but the REL
files are available for public access.

If a program will be used many times, a more efficient way of loading can
be done in this way. After the program in the "list" of the "LOAD" command are
loaded, the core content of the user's area in the core memory may be saved as a
file with an EXE extension, The monitor commands to save a core image are IOAD

88 CHAPTER 3 FORTRAN-10

and SAVE as shown below:

LIOAD list
.SAVE NAME

and the saved file will have a name of NAME.EXE. Once that is done, subsequent
execution of the program may be done by a command of:

.RUN NAME
where "NAME" is the the name of the specified EXE file.
This procedure is particularly advantageous if (1) a program will be used
repeatedly, or (2) the list of programs in the EXECUTE command contains many

files and many file specifications. Some of the files may reside on slow and
busy peripherals such as the DECtape.

3.4 Optional Switches

The monitor command EXECUTE requires the use of three service programs:
the monitor, the FORTRAN compiler, and the loader. In each of the three
processors, options are implemented to allow a user to select some variation of
services. ‘These options are called switches. Switches are available on all
three service processors, and they are separately discussed next.

(1) Monitor switches The details of the switches for the command
COMPILE, IOAD and EXECUTE will be given in Chapter 8, so only the most
frequently used switches are listed below. The monitor switch has a form of a
slash followed immediately by a word which can be abbreviated. These switches
and their functions are listed in Table 3.1.

7

(2) Compiler switches While the monitor program is somewhat uniform
among the DEC System-10 users, the compilers-~particularly the FORTRAN
compiler-- may have many versions, and some with local modifications. Selected
switches which appear on the same command line as those of the compiler switches
are words enclosed in parentheses. These switches are listed in Table 3.2.

(3) Loader switch The format of a loader switch 1is a percent
sign (%) followed by one or two characters. Three such switches are listed in
Table 3.3.

Example: « EXECUTE SAMPLE.FOR/LIST

Function: Compile SAMPLE.FOR, store SAMPLE.REL on disk, load it into
the core, .and execute. Also, generate a source listing
file SAMPLE.LST.

Example: EXECUTE SAMPLE. FOR/CREF (I) %0M

Function: Compile (including all D-statements), load and execute.
Generate a cross reference file for later CEEF program, and
produce a loader map at the terminal.

PORTRAN Switches

89

Monitor Switch

Function

/COMPILE

To force a compiling even |f there already exlsts a REL
file. The purpose of this switch is to force the use of
compller because certain compller switches are also
chosen In the EXECUTE command. Otherwise, the compiler
Is bypassed If there already exlsts a valid REL file
bearing the same filename.

/CREF

To produce a cross-reference Ilsting flle on +he disk
for each file compiled for later processing by the CREF
program. The cross-references Include such Information
as varlable names, statement labels, and thelr cross
references. Before the user signs off, he may get a
printout copy of the cross-reference by another monitor
command: CREF. If the CRF file generated during a
previous session at the terminal still Is stored on
disk, a Ilst may be obtalned by running the CREF program
In the following ways:

.R CREF .R CREF
*¥LPT:=NAME .CRF *TTY:=NAME.CTF
This will produce a copy of listing on the line printer

(the left version) or on the terminal (+he version on
the right).

/LIST

To generate a disk |isting flle for each file complled
with the same fllename, but with an extension of LST.
These files can be |isted with +he PRINT or QUEUE
command (see Chapter 8)., |f a REK file already exists,
this switch will be Ignored unless a forced complling Is
ordered by the /COMPILE switch.

/L IBRARY

/DEBUF :BOUNDS

To select the loading of only those subroutines and
functions referenced In +the programs. Otherwlise, the
entlre llbrary file will be loaded.

To report 1f subscripts get out of bounds as defined by
the DIMENSION statement for that array. This Is one of
the most common errors.

Example:

Function:

Table 3.1 Selected Monitor Switches

«EXECUTE SAMPLE,FOR, PRG:IMSL/LIBRARY

Compile the source program SAMPLE.FOR and thus generate
SAMPLE,REL. Then load it along with those subroutines in
PRG:IMSL that are called by the program SAMPLE.FOR. The
LIBRARY switch here 1is absolutely necessary because the
package PRG:IMSL contains about 400 subroutines., Execute
when loading is completed.

Q€

CHAPTER 3 FORTRAN-10

Compller Switch

Function

(INCLUDE) or
N

To compile The program by regarding all statements with

D" in column 1 as FORTRAN statements. (f +this switch
is not speciflied, those statements will be regarded as
comments and bypassed. The frequent uses of thls switch
Is to insert the debugging statement as fthe
"D~-statements," which are usually output statements to
type out Intermediate results or to type out tracing
progress, such as a message "Reaching check point 3."

Once a program 1Iis completely debugged, it can be
compiled agaln, but this time without the
INCLUDE-swl+ch, and all D-s+a+emen+s wull be Ignored

(NOERROR) or To suppress error message on user's +erm|na|. The error

(NOE) message will only appear on the listing file 1f I+ s
reques+ed by +he /LIST or +he /CREF switch.

(NOWARNINGS) or| To suppress warning messages on the ferminal.

(NOW)

(OPTIMIZE) or To perform-global optimization of complling.

(0

Table 3.2 Selected FORTRAN Compiler Switches

Loader Swtfch Function

%S To load local symbols wused primarily for debugging
purpose along wl+h The program

$1M To type out a loader map at The user’s terminal and
include local symbols. In a batch job, the loader map
with +h|s SW|+ch will be Included In the log file.

B0M To Type out a loader map at the user®s terminal. In a

batch job,
the log file.

this switch will include the loader map In

Table 3.3 Selected Loader Switches

An Example - I | 91

3.5 An Example of FORTRAN Processing

As an illustration of FORTRAN-10 programming and processing on a
time-sharing system, an example will be carried through in all steps. The
. problem deals with the solution of an equation Ax + Bx +Cx + D =0 with
significance to 3 digits. The FORTRAN program for the problem is listed below:

C SAMPLE PROBLEM FOR FORTRAN-10
READ(5,10)A,B,C,D,X1
10 FORMAT (F20.7)
1 X2=X1- (A*X1**3+B*X1**24C*X14D) /(3. *A*X1** 242, *B*X1+C)
WRITE (6 ,10) X2
IF (ABS ((X1-X2)/X2)-0.001)3,3,2
2 X1=X2
GO TO 1
3 WRITE (6,11)X2
11 FORMAT (/' THE REAL ROOT = ', F20.7)
STOP
END

The rest of this section shows a case history of running this problem,
from entering the program, through debugging and editing and finally executing
it. Written running comments were added to aid understanding. All text in

italics represent the wuser's own typing; all others are the computer's
printout.
UPDATE NEWTON.FOR - 3

[CREATING NEW FILE]
SAMPLE PROGRAM FOR FORTRAN-10
READ(5,10)A,B,C,D,X1

10 FORMAT(5F)

1 X2=X1-(A*XI**3+BAXI**2+CAX1+D) /(3. *A* X1 ** 242, *BAX1+C)
WRITE(6,19)X2
IF(ABS((X1-X8)/X2 .001)3,3,2 - M?/ww

9 X1=yo EIKY > gnmkw ﬁ
GO T0 1 fg VPDATE

3 WRITE(6,11)X2

11 FORMAT(/' THE REAL ROOT = ', F20.7)
STOP
END .

\/\/\/VV\/VVV\/V&

>8END
1 blocks written on NEWTON.FOR[115103,320571]

EXECUTE NEWTON.FOR Mitsing minus Sign
FORTRAN 5A(621): NEWION.FOR y Lo
00006 IF (ABS ((X1-X2) /%2 “001.3,3,2 Use error -:3“5'5
?FTNUMP LINE:00006 UNMATCHED PARENTHESES messaqe to Relp
00010 11 FORMAT(/' THE REAL ROOT = ', F20.7) . .
00011 STOP with debuqging.
?FINFWE LINE:00010 FOUND "T" WHEN EXPECTING A END OF STATEMENT

UNDEFINED LABELS

19 11
?FINFTL ~ MAIN. 4 FATAL ERRORS AND NO WARNINGS
LINK: LOADING

[INKNSA No start address]
EXIT

92 CHAPTER 3 FORTRAN-10

_UPDATE NEWTON.FOR)
C SAMPLE PROGRAM FOR FORTRAN-10
>87T0 6

IF (ABS (ABS ((X1-X2) /X2.001)3,3,2
>8CHANGE/ .001/)-.001/ Make changes by UPPATE

IF (ABS ((X1-X2) /X2)-.001)3,3,2 >
>8T0/STOP/

STOP
SSCHANGE/STOP/ STOR/

STOP
>8END)
1 blocks written on NEWION.EOR[115103,320571]

EXIT
EXECUTE NEV/TON.FOR

FORTRAN 5A(621): NEWTON.FOR

UNDEF INED LABELS Creor <til e rists .
19 11
?FINFTL MAIN. 4 FATAL ERRORS AND NO WARNINGS

LINK: Loading
[INKNSA No start address]

EXIT

UPDATE NEWTON.FOR

C SAMPLE PROGRAM FOR FORTRAN-10 - .)
STRAVEL/19) <= = -~ = - o - = =~ oearch e slaferment 19
WRITE (6 ,19) X2
S$CHANGE/19/10/
WRITE (6 ,10) X2 .o
3800 = { -,)_W o Search fpe more 19
?>8END

) T " w o . e."
1 blocks written on NEWTON.FOR[115103,320571] 4 Says cant “f"“\ any mes

EXIT

JEXECUTE NEWTON. FOR “ T C e EKEOCI*Q (IJ:?I")
FORTRAN 5A(621): NEWION.FOR .

MAIN. OCTAL PROG SIZE=145 } Compile and Joad successzully
LINK: Loading

[LNKXCT NEWTON execution]

10 216.0 65.0 -50.0 16.0 = o Input cdatn for
12.9158000 st . pex - S0 =
11.1082200 Xim f6X7 65 °
10.2498400 With jnitral trial value XL=16
10.1173400
10.0000900
10.0000000

THE REAL ROOT = 10.0000000 Poswer : x= (o

STOP

End of execution FOROTS 5B(1001)
CPU time: 0.09 Elapsed time: 23.98
EXIT

Constants, Variables and Expressions 93

A SUMMARY OF FORTRAN-10

This part of the chapter is devoted to a sumary of the FORTRAN-10
language, which is an enhancement of the ANSI standard FORTRAN. The enhancement
may be a new FORTRAN statement, such as the IMPLICIT-statement; or it may be
some additional features in a standard FORTRAN statement, such as those in the
DIMENSION-statement. These enhancements will be identified in the summary by a
heavy vertical line on the left side of the page, for example:

(5) A debug line A debug line has a character "D" or "d" etc etc etc

The identification of the enhancement will be useful in the conversion of
a FORTRAN-10 program to other versions of FORTRAN, or vice versa.

3.6 A summary of Constants, Variables and Expressions

(1) Constants There are nine types of constants in FORTRAN-10:
integer constants, real constants, double precision constants, complex
constants, logical constants, literal constants, octal constants, double octal
constants, and statement label constants, as summarized in Table 3.4:

Constant General Form Remarks and Examples -
Integer constant | no decimal point ranging from -23541 +o 2351
Real constant always with a decimal 7 to 9-digit precision

In mantissa
Double precision | exponent symbol is D 3.00D02=300.0000000000000
constant (16-digit precislon)

Octal constant signed or unsigned octal "567, "-567
preceded by a '"!
Double octal same as single preclsion
constant octal
Complex constant | (x,y)

Logical constant | .TRUE. .FALSE.

"1234567000123456700

| (3.1,-4.7) for 3.1-j4.7

"_1 "0
— R e e U US ST NSUI - —
Literal constant | 'QUOTE' NHXXxXX 'TIME?! 4HT IME
Statement label 1 to 5 declmal digits $1234 8999

preceded by "§" or "&"

Table 3.4 A Summary of FORTRAN-10 Constants

94 CHAPTER 3 FORTRAN-10

\

(2) Variables Variables are specified by names and types. The
name of a variable consists of one to six alphanumeric characters, the first of
which must be alphabetic. The type of a variable may be specified explicitly by
a type declaration statement or implicitly by the IMPLICIT statement. If the
variable is not specified in this manner, then a first letter of I, J, K, L, M
or N indicates an integer variable; any other first letter indicates a real
variable, ‘

Variable arrays carry subscripts that are integer constants, variables or
expressions. 1In addition, the following are permitted in FORTRAN-10:

A. A subscript may contain a non-integer arithmetic expression.
However, when such a subscript is evaluated, it is truncated and
converted to an integer after its evaluation.

B. A subscript may contain a function reference such as A(10*SIN(X)) .

C. Subscripted variables may be used as subscripts or nested subscripts
of subscripted variables.

(3) Expressions Compounded numeric expressions must Dbe
constructed —according to the following rule. With respect to the numeric

operators of +, -, *, /, any type of quantity (integer, real, double precision,
complex, logical, literal, octal or statement label) may be operated with any
other, with one exception: A complex quantity may not be operated with a double
precision quantity. The result of these mixed mode operations are tabulated in

Table 3.5. (Mixed mode operations are not allowed in ANSI FORTRAN.)
Operation Type of Argument 2
Double
+, -, ¥,/ Integer Real Precislon Comp lex Others
Integer Integer Real Double comp | ex Integer
Precislon
_ . S R S —
+ Real Real Real Double Comp lex Real
® Precision
E b e S AR N - —
E? Double Double Double Double Not Double
- Precision || Precision | Precision Precision Al lowed Precision
5 ———— . R R AU
Q Comp lex Comp lex Comp [ex Not Comp lex Comp lex
> Al lowed -
= e S e
All Intfeger Real Double Comp lex Octal
Others Precision
Table 3.5 Results of Mixed Mode Operations

For example, if X is real in an expression (3.1,-4.1)*X, the expression will be

complex after evaluation.

FORTRAN-10 Statements ' - 95

)

The logical operators and telational operators are listed in Table 3.6
and Table 3.7 respectively.

Loglical Operators |Meaning |Example Relational Operators |Meaning
.NOT. Negation| .NOT.P .GT. >
.AND, n P.AND.Q " .GE. >
.OR. U P.OR, Q LT <
JXOR. @ P.XOR.Q .LE. <
LEQV. ® P.EQV.Q .EQ. =
.NE, %

Table 3.6 Logical Operators Table 3.7 Relational Operators

A summary of FORTRAN~10 library functions is shown on Table 3.8.

3.7 FORTRAN-10 Statements

The field format of a FORTRAN-10 statement follows the general rules of
FORTRAN-IV statement. There are certain differences associated with a
FORTRAN-10 line. In FORTRAN-10, there are following different types of
statement lines:

(1) An initial line If a FORTRAN-10 statement has
continuation lines, the first line of the group is called an initial line.

(2) A continuation line A continuation line is identified by any
character (except for a blank or zero) placed in column 6. A maximum of 20
lines are permitted in a FORTRAN-10 statement including the initial 1line.
Continuation lines may not be interrupted by comment lines.

(3) A multi-statement line A multi~statement line combines several
successive statements in a single statement, each component separated from the
other by a semicolon (;). If the multi-statement carries a statement number, it
is always associated with the first component. For example, two separate
statements:

A
X

B*C
Y+2

[}

can be combined into a single line as: A = B*C; X = Y+Z

(4) A Comment line A comment line has one of the characters
(C,$,/,*,1) placed in column 1. Comments may also be added to any statement in
the field of columns 7-72, provided that a character (!) precedes the text, For
example:

A =B*C ; X =Y+Z ISTEP NO. 1

(5) A debug line A debug line has a character "D" or "g"
in column 1. When the program. is compiled, it is ignored unless there is an
Y (INCLUDE)" switch in the command. This is used for debugging purposes, such as
an output line for tracing.

FORTRAN-10

CHAPTER 3
Type of

Functlon Form Definition Argument Result
Absolute values:

Real ABS Real Real

integer 1ABS largl integer Integer

Double DABS Double Double

Complex to real CABS c= J >4y Comp | ex Real
Conversion:

Integer/real FLOAT Float(Arg) ; integer Real

Real/Integer IFIX Infeger(argf' Reat Integer

Real (cmpIx) REAL REAL part(cmplx arg) Comp lex Real

Imag (cmp x) AIMAG IMAG part(cmpl!x arg) Comp lex Rea!

Reat/Cmp(x CMPL X c=Argl +] Arg2 2 Reals Comp lex

Cmpx conjugate CONJG c=con jugate(cmp!x arg) Comp lex Comp lex
Truncation:

Real/real AINT Real truncation Real Real

Real/integer INT Integer truncation Real Integer
Remalndering:

Real AMOD Remalnder(arg!/arg2) 2 Reals Real

Integer MOD Remainder(argl/arg2) 2 Integers Integer
Square root:

Real SQRT Real Real

Double DSQRT ‘}arg Doubie Double

Comp tex CSQRT Comp | ex Comp lex
Logarithm:

Real ALOG Ln (arg) Real Real

ALOG10 Log (arg) Real Real
Doubtle DLOG Ln (arg) Double Double
DLOG10 Log (arg) Double Double

Comp lex CLOG Ln (arg) Comp | ex Comp lex
Sine: i o

Real (radians) SIN Real Real

Real (degrees) SIND Real Reat

Double (radians) DSIN sin (arg) Double Doubie

Comp lex CSIN Comp lex Comp | ex
Cosline:

Real (radians) cos Real Real

Real (degrees) CcosD Real Real

Double (radians) DCOS cos (arg) Double Double

Comp lex CCos Comp lex Comp | ex
Arc sine ASIN sin=!(arg) Real Real
Arc cosline ACOS cos~1(arg) Real Real
Arc ‘tangent:

Real ATAN tan-1(arg) Real Real

Double DATAN tan~1(arg) Double Doub'te

Two real arg ATAN2 fan"(arg1lar92) Real Real
Exponential:

Rea! . EXP Real Real

Double DEXP efarg) Double Double

Comp [ex CEXP Comp lex Comp lex
Hyperboilc:

Sine SINH sinh (arg) Rea! Real

Cosine COSH cosh (arg) Real Real

Tangent TANH tanh (arg) Real Real
Maximum value:

Real AMAX1 Max(al,82,...) Reals Real

Integer MAXO0 Max(kl,k2,...) Integers Integer
Minimum value: \

Real AM{N1 Min(al,a2,...) Reals Real

Integer MINO Min(ki,k2,...) integers Integer
Random number RAN random number dummy Real

between 0 and 1
Table 3.8 FORTRAN-10 Library Functions

FORTRAN Compilation Control Statements 97

(6) A blank line . This is ignored in compiling, but useful
in making the listing easier to read.

-

Various types of FORTRAN-10 statements will now be discussed. As in all
versions of the FORTRAN language, the order of the FORTRAN-10 statements is
important in a program. The proper order of the statements is summarized in

Table 3.9.

PROGRAM. FUNCTION, SUBPROGRAM
or BLOCK DATA statements

IMPL ICIT statements

PARAMENTER statemets

DIMENSION, COMMON,
EQUIVALENCE, EXTERNAL
NAMEL ST, or TYPE

COMMENT FORMAT statements Speclification

statements
Statement
function

DATA Definitions

statements -
Executable
statements

END statement

Table 3.9 A Summary of FORTRAN-10 Statement Sequence

The list of statements in each box indicates the order in which these statements
must appear. The table also indicates that certain statements may be placed
anywhere in the range shown in the Table. For example, a FORMAT statement may
be placed anywhere after the PROGRAM statement and before the END statement.

3.8 A Summary of FORTRAN-10 Compilation Control Statements

Statement Functlion -

PROGRAM name This statement Instructs the compller to assign "ame" instead
of MAIN as the name of a program. 'name" must be 6 characters
or less. This statement, 1f written, must be the first
statement of a program.

INCLUDE 'file! | file= standard file specification. Thls statement aliows an
inclusion of a code segment In a program unit.

END Physically the last statement of a program or a subprogram.

Table 3.10 A Summary of FORTRAN-10 Compilation Control Statements

98

CHAPTER 3 FORTRAN-10

3.9 A Summary of Specification Statements

The specification statements specify the type characteristics, storage
allocations, and data arrangements. They are summarized in Table 3,11:

Statement

Function

DIMENSION S51,52,...5n

where S7 Is an array declarator of either of two form:

VARIABLE (max1,max2, ... ,maxn)
VARTABLE (minl:maxl, minl:maxl,..., minn:maxn)

and "mini:max" value represents the lower and upper
bounds of an array dimension. The symbol colon (:)} may
be replaced by a slash (/) as a delimiter.

When used in a subprogram, the array dimension may be an
integer constant or an integer variable, thus making the
dimension adjustable In a subprogram.

TYPE list

B

where TYPE may be one of the following: INTEGER, REAL,

DOUBLE PRECISION, COMPLEX or LOGICAL. Size modifiers are

acceptable in FORTRAN-10 but are interpreted differentiy:
type¥1 = acceptable but Interpreted as a full word
type*2 = full word Type¥*4 = full word
type*8 = double preclsion

IMPLICIT TYPE(al,A2..)
TYPE(D1,B8y.s)see

lwhere A1,A2,...,B1,B2,... are letters. This statement
declares the data type of varlables and functions
according to the first letters. A range of letters may
be specifled by a dash between the flrst and the last
letters, for example: IMPLICIT INTEGER (A-N)

COMMON /block indentifier/identifier,identifier,...identifiler

The COMMON statement causes specified varlables or arrays
to be stored In an area avallable to other programs. By
means of COMMON statements, the data of a main program
and/or 1ts subprograms may share a common storage area.

EQUIVALENCE (VJ’VZ""

)_, (V,Vk./.]_,-.-), “va
The U | VALENCE statement causes more than one variable
within a glven program to share the same storage area.

EXTERNAL namel, name2,

PARAMETER PI=C1, P2=C2, ...

Distinguish the names as names of subprograms to be used
as arguments to other subprograms.

where Pi = a standard user-defined identifier,

Ci = any type of constant
This statement defines constants symbolically during
compllation.

DATA List/dz,dg, .

/s

1ist2/dy,dpsgsevs/s oo

The data to be compiled intfo the object program Is
specified in this statement. The "list" may be a full
array or an partial array In an implied DO format.

Tahle 3.11 A Summary of Specification Statements

FORTRAN Assigrment Statements 99

3,10 A Summary of Assignment Statements

The assignment statements are summarized in Table 3.12:

Statement

Function

VARIABLE = EXPRESSION

The EXPRESSION in an asslgnment statement may Dbe an
arlthmetic or a loglical expression. Their formats are the
same. In an arithmetic expression, mixed mode 1Is permitted
in FORTRAN-10. The rules of mixed mode expression results
depend on the type of VARIABLE In the statement. Note +that
we are dealing with FORTRAN statements here, while a previous
Table 3.5 lists the results of mixed mode operations In a
sub-expression. The rules are now summarlzed below:

Mixed Mode Statement

Expression Variable Type
Type Real Integer | Complex | Double | Logical
Real D c R, | H,L D
Integer C D R,C, | H,C,L D
Complex R C,R D - R
Double H C,H,L - D H
Loglcal D D R, | H,L D,H
Literal D,H % C,H % D & D & D ¢
Legend: D = direct replacement
C = converslon with truncation
R = real part only
| = Imaginary part set to 0
H = high order only
L = low order part set to O

Note: use of the first part of the literal

use the flrst two words of the |iteral

20

ASSIGN~7 TO I

This 1s used to assign a statement label constant fo a
varlable name, which will become a statement label varlable.

Table 3,12 A Summary of Assignment Statements

100 CHAPTER 3 FORTRAN-10

3.11 A Summary of Control Statements (Table 3.13)

Statement Function

GO TO~ An unconditional transfer statement

G0 T0 (nl,n2,...,mk) or GO TO (nl,n2,...,nk)
' Assigned GO TO statement

GO TO k OR GO TO k, (L1,L2,...In)
Assign GO TO statement

\F (&) L1,02,L3 Conventional arithmetic IF statement where = an arithmetic
expresssion

IF &) S where S is an executable statement. This 1Is a conventional
logical IF statement, where E is a logical expression.

IF (F) ni,n2 where n1 and n2 are two statement labels. This is a two-exit
logical IF statement and E = a logical expression. This
statement will fTransfer the executlion to statement label »n7 if

E equals .TRUE., and to statement n2 if £ = .FALSE. in other
words, this is an "|F-THEN, OTHERWISE" statement.

00n I =mi, m2, md

where »n = terminal statement label
I = index variable
ml = Initial parameter
m& = terminal parameter
ms = increment parametfer

Note: (1) Nested DO°s follow conventional rules.

(2) Index variable should not be altered within the loop
range. Even an inclusion as a subprogram argument
may produce a warning message during compiling.

(3) The Index varliable may be an Integer or a real
variable. The parameters may be Integer or real
expressions, which will be calculated at the
beginning of the DO loops.

(4) Real, Integer, positive, negative, zero constants
are all permitted for mI,m2,m3. Thus the FORTRAN-10
DO~statements allow decrements, negative indices,
non~integer numeric indices.

STOP , or STOP ‘!'literal string' , or STOP n
Terminal will print the literal string as a message or n as a
message.

PAUSE, or PAUSE literal string, or PAUSE n

The PAUSE statemnt will cause the followlng message to be
printed at the terminal:

TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

Table 3.13 A Summary of Control Statements

I/0 Statement Terminology 101

3.12 Terminology Used in FORTRAN-10 INPUT/QUTPUT (I/0) Statements
i

One powerful feature of FORTRAN-10 is that it possesses a set of
extremely powerful input/output statements, far more powerful than the standard
set in the 1966 ANSI standard. In order to present the I/O statements, we will
first get acquainted with some terminology:

(1) Transfer mode Data transfer between storage and I/0 devices or
between storage locations is done in. several different modes:

a. Sequenctial mode This is the most common mode, in which the
records are accessed or transferred in a sequential order
immediately following the last accessed or transferrecd record.

b. Random access mode This permits the access and transfer of
records from a file in any desired order. The OPEN (see Section
3.16) statement is required to establish an I/0 mode of this kind.

c. Append mode This is a variation of the sequential
mode. It permits writing a record immediately after the last
record of the accessed file. The OPEN statement is required to
establish an I/0 mode of this kind.

d. Dump mode

(2) Keywords of I1/0 statements (Table 3.14)

Keyword Transfer of Data

READ from a peripheral device to the processor storage

REREAD repeat the last READ

ACCEPT from a terminal to storage

FIND to locate the next recoprd to be read during a
random access READ operation

DECODE from.a specified storage area into the

WRITE from storage to a perlipheral device

PRINT from storage to a printer

PUNCH from storage to a card punch

TYPE from storage to a terminal

ENCODE to transfer from the variables of a specified
1/0 Ilst into a speclfied storage area

Table 3.14 A Summary of Keywords of FORTRAN-10 I/0 Statements

102 CHAPTER 3 FORTRAN-10

(3) Basic formats and components of READ and WRITE statements

Basic
Statement Form Functlion

KEYWORD (u,f) list Forma++ed /o transfer

KEYWORD (u#R,f) list Random access forma*fed I/O transfer

KEYWORD (u,*) Z?St Llsfed dlrecfed I/O Transfer

KEYWORD (u,name) NAMELIST-conTroIIed I/O +ran5fer

e e [e S S USSP —

KEYWORD (u) Z@st Blnary l/O *ransfer

KEYWORD (u#R) list Random access binary l/O fransfer

where:
KEYWORD = READ or WRITE
u = loglcal unit number
f = format statement number
list = /0 |ist
#rR = the delimiter # followed by tThe number of a record
in an established (by an OPEN statement) random
access file
* = gymbo! specifying a list-directed 1/0 transfer
name = the name of an 1/0 list defined by a NAMELIST

statement
In additon, when a unit u Is speclified, the optional argument

ERR=c and END=d

may be added to any of the READ or WRITE statement.

Table 3.15 A Summary of READ/WRITE Basic Formats

(4) Logical unit number (Table 3.16)

Unit Default . Use
Number xx Fllenames Time-shar ing| Batch
| 1.-4. | FORxx.DAT _. o...DSK | DSK__]
| 5 b TITY o CDR
6o TTY o LPT]
7 ¢ .\] o cop 1 coP |
8-30 DSK DSK

Table 3.16 Logical Unit Number Assignments

These are decimal numbers to identify the physical devices used for most
FORTRAN I/0 operations. The devices should be explicitly specified in the' OPEN

I/0 Statement Terminology - . 103

statement. The definitions of these unit numbers as well as how many are
allowed are determined by the local installation. The typical DEC definition
specifies units ranging from 1 to 63 assigned to the devices DSK, DECtapes,
magtapes, CDR, LPT, PIR, PTP, etc. However, since a different system of
peripheral device allocation is used at the University of Pittsburgh, the
logical unit numbering system is revised and shown in Table 3,16. Installation
at other institutions may have still diffeent definitions depending on the local
configurations.

(5) Formatted and unformatted files Files transferred under the
control of a format specification are called formatted files. Unformatted files
are binary files transferred without a reference to a format specification and
are transferred on an one-to-one correspondence between the source and the
destination.

(6) Random access records The random access records are specified by
an integer preceded by an apostrophe or a pound sign, for example, 'l23 or #123.

(7) List directed I1/0 The asterisk (*) is an I/0 statement in
place of a FORMAT statement number tells the compiler that the specified
transfer operation is "list-directed."” In a list-directed transfer, the data and
their type are specified by the READ/WRITE 1/0 list. If a READ statement has an
asterisk (*) where the FORMAT number usually is, the list-direct I/O will follow
the rules listed below:

a. Octal constants in the list-directed I/0 are not permitted.

b. Literal constants must be enclosed in single quotes, such as
'"TIME'.

c. Blanks and commas are delimiters to separate different items in
the 1/0 list.

d. Complex constants must be enclosed in parentheses.

e. If an item is inputted as a null (blanks, tabs, carriage returns,
or linefeeds, but no data), the item will retain a previocusly
inputted value.)

f. A slash at any time will terminate the input operatioﬁ even if the
I/0 list is not yet satisfied. .

g. the repeat of a constant may be written as n*K, which means the
constant K repeated n times,

(8) NAMELIST 1/0 lists The I/0 lists are defined by a NAMELIST
statement (see Section 3.17) in which each I/0 list is named by a one- to
six-character name that may be referenced by a READ/WRITE statement. 1/0
statements with a MNAMELIST-defined I/0 list cannot contain a FORMAT statement -
reference or a conventional I/O list. The only type of formatting permitted in
the NAMELIST-controlled statements is an input record of $NAME varl=valuel,
var2=value2,...$.

104 CHAPTER 3 FORTRAN-10

3.13 A Summary of FORTRAN-10 READ Statements

Table 3.17 shows a summary of different types of FORTRAN-10 READ
statements:

Statement Function

Sequentlal Formatted READ:

READ (u,f) list This Is the most frequently used form. |t transfer data from
logical unit u fo storage.

READ (u, f) input data from unit u into either a H-fleld descriptor or a

literal field descripftor given within the referenced format.
READ Same as READ(u,f) where =default unit for a card reader.
READ f, list Read data from a card reader Into storage.

Sequentlal Unformatted Binary READ:

READ (u) list Read one record from unit u into storage. The record must be
previously prepared by a FORTRAN-10 unformatted WRITE
statement.

Sequential List-Directed READ:

READ (u,*) list Read data from device unit u info storage as values of Ifems
in the Ilst. If necessary, each Item is converted to the
type assigned in the list.

READ #*, list Read data from a card reader a |ist-directed Ilst.

Sequential NAMEL IST~Controlled READ:

READ (u,name) Read data from unit u Into storage as the values of the Items
Identified by the NAMELIST Input specified by the name .
Random Access Formatted READ: h

READ(u#R,f) list | Input data from record R of unit u according to the
referenced FORMAT f. The Input flles must be previously set
up elther by an OPEN or a DEFINE FILE command.

Random Access Unformatted READ:

READ (u#R) liet Input data from record R of unlt 4. Place data Info storage
as values of items in the lZst, The input file must be a
binary file prepared by a previously applied FORTRAN-10
unformatted random access WRITE statements.

Table 3.17 A Summary of FORTRAN-10 READ Statements

FORTRAN WRITE Statements

105

3.14 A Summary of FORTRAN-~10 WRITE Statements

The WRITE statements resemble the READ statements in formats.

Diffeent

types of FORTRAN-10 WRITE statements are now summarized in Table 3,18:

Statement

Function

WRITE (u,f) list

WRITE (u,f)

Sequential Formatted WRITE:

Thls Is the most commonly used WRITE form. It transfers data
from storage and outputs 1t on logical unit u.

Output the contents of any H-field or Iliteral
contained by to the logical unit u.

descriptfor

WRITE f Same as WRITE(u,f) where y=default unlt for a [ine printer.

WRITE f, list Same as WRITE(u,f)list where u=default unlt for a |line
printer.

Sequential Unformatted Binary WRITE:

WRITE (u) list Output the values of items 1In the Iist Into +the flle
assoclaTed wITh Iogclal untt u.

I RS e e P .

Sequen*lal List-Directed WRITE:

WRITE (u,*) Zast Ou+pu+ dafa from sTorage intfo loglcal unlf U,

Sequenflal NAMELIST—ConTrolIed WRITE:

WRITE (u,name) Output data from storage into loglical unit ¥ with the values

of items as Identifled by the NAMEL|ST~defined |lst specified
by The name name.

WRITE (u#iR,f)1list

Random Access Formatted WRITE:

Output into unit u the values from the storage identified by
the contents of |ist to record #. Only the disk flles that
have been set up by elther an OPEN statement or a call to the
subroutine DEFINE FILE may be accessed by a WRITE statement
of Thls form.

WRITE (u#R) list

Random Access Unformatted WRITE:

Output into unit u the values from the storage ldentifled by
the contents of list to record R, Only the disk files that
have been set up by either an OPEN statement or a call +o the
subroutine DEFINE FILE may be accessed by a WRITE statement
of this form.

Table 3.18

A Summary of FORTRAN~-10 WRITE Statements

106 CHAPTER 3 FORTRAN-10

3.15 A Summary of FORTRAN-10 I/O Statements

All FORTRAN-10 I/0 statements, including the READ/WRITE statements
already discussed are now summarized together in Table 3.19:

I/0 Statement| Formatted Transfer Format Controf List=Directed
Unformatted Namel ist
READ
Sequentlal READ(u, f)list READ(u)list READ(u,name) READ(u, *)list
READ f,list READ *,list
READ f
Random BEAD(u#R, f)list | READ(u#R)list
WRITE
Sequential WRITE (u, f)1iet | WRITE(u)list WRITE (u,name) WRITE (u, *)list
or, Append WRITE f,list
WRITE f
Random WRITE (u#R,f)Llist
REREAD
Sequential REREAD f,list
F IND
Random only |FIND(u#R)
ACCEPT
Sequential ACCEPT f,list ACCESPT *,1list
only
PRINT
Sequential PRINT f,1list PRINT #*,list
only
e . S . .
PUNCH
Sequntial PUNCH f,list PUNCH *,1list
only PUNCH f
TYPE
Sequentlal TYPE f,list TYPE *,1list
only TYPE f
ENCODE
Sequtntial ENCODE(c, fys)list
only
PO—
DECODE
Sequential DECODE(c,f;s)Ziﬁt
Legend: u = logical unit number * = gpecify list-directed 1/0
. f'= format number #R = loclal record position
list = 1/0 |ist ¢ = pumber of characters per
name = name of specific Internal record

NAMEL IST 1/0 list

W
]

address of first storage

Table 3.19 A Summary of FORTRAN~10 I/0 Statements

OPEN/CLOSE Statements) 107

3.16 FORTRAN-10 File Control Statements

The FORTRAN-10 file control c¢ontains only two statements: OPEN and
CIOSE. They are, however, among the most powerful and versatile statements in
specifying the input/output files. The general forms are:

OPEN(argl,arg2,...)
CLOSE (argl,arg,...)

The arguments have a genral form of ITEM = value, The power and versatility of
the OPEN and the CIOSE statements are derived from the many options available as
the arguments. These arguments are summarized and tabulated in Table 3.20(A&B) .

Although there are many available options, many are special purpose type
and not frequently used. The simplified version is just to take the most often
used arguments: "unit", "file", "dispose" and "directory" in the OPEN
statement, and Jjust the "unit" in the CIOSE statement, Thus, the most often
used forms are: :

OPEN(UNIT=u, FfLE'= '"NAME.EXT ', DISPOSE 'value ', DIRECTORY="m,n")

CLOSE (UNIT=u)

Examgle: OPEN(UNIT=5, FILE='INPUT.DAT')

Function: The disk file INPUT.DAT is opened on unit 5. If the
FORTRAN program is written with unit 5 .as the input unit,
such as in the READ(5,f)list statement, the OPEN statement
will change the program execution from TTY input to a file
input. This is a convenient way of adapting an existing
program from the TTY input to a disk file input,

Examgle: OPEN(UNIT=1, FILE='INPUT.DAT', DIRECTORY='115103,320571")
Function: The disk file IMPUT.DAT{115103,320571] is opened on unit 1.

Example : OPEN(UNIT=3,ACCESS="SEQOUT ', FILE="DATA. TMP"')
WRITE-statements on unit 3
CLOSE(UNIT=3)
OPEN(UNIT=1,ACCESS="SEQIN', FILE="DATA,TMP',DISPOSE="DELETE")
READ-statements on unit 1
CLOSE (UNIT=1)

Function: An output file is opened on unit 3, to be named as
DATA,T™P. The file is closed after output statge is
completed; the file is reopened on unit 1 as an input
file. The file is deleted from the disk when the CILOSE ,
statement is executed.,

Example: OPEN(UNIT=1,FILE='TNPUT,DAT',ACCESS="RANDOM' ,MODE="ASCIT",
1 RECORD SIZE=80,PROTECTION="177)

Function: Open on unit 1 a disk file INPUT.DAT for random access I/0
operation in ASCII mdoe. The records in the file are 80
characters long. When the CIOSE statement is executed, the
file will be given a protection code of 177.

108 CHAPTER 3 FORTRAN-10
Possible
Argument Value Function Open*|Close* Default Value

UNIT = Iv,lc To define the loglcar unit number. Req | Req

DEVICE = Tv,ic To specify the physical name or the loglcal name of an Op | Op logical name u

ACCESS = Six To sepcify the type of Input gnd/or output statements Op lg 'SEQINOUT!
possible and the flile access mode to he used In a specified 1/0
values operatlons. Tha six possible values are:

YSEQIN' = to be read In sequentlial access mode
tSEQOUT! = fo be written in sequential access mode
1SEQINOUTY = data flle may be fjrst read, then written
record-by-record In a sequentlal access
mode. At this access, a WRITE/READ seguence
Is tllegal.

TRANDOM! = to speclfy random access mode In elther
READ or WRITE operation. The RECORD SIZE
optlon Is required when thls access mode Is
speclfled.

TRANDIN' = to speclfy a read-only random access mode
with a named flie.

tAPPEND? = to speclfy the APPEND mode. The record
speclfled by an assoclated WRITE statement
{s to be added to the end of a named flle.
You must close it and then reopen the mod)-
fled flle to permit it to be read.

MODE = four To define the character set of a flle or record. Op tg {'ASCII' for
possibie Four possible values are: formatted file
values

TASCII? = to speclfy an ASCIi flle TBINARY! for
1BINARY! = to speclfy a FORTRAN formatted blnary flle unformatted
T{MAGE! = to specify an unformated binary flle flle

tDUMP! = to speclfy the file to be handled In
DUMP mode

DISPOSE = | six To specify the actlon to be taken regarding a flle at Op Op |'SAVE®
possible the close time. Six values are possibtle:
values

YSAVE' = to leave the file on the device :

'DELETE! = to delete the flle If It Is on disk or on
a DECtaps. Otherwlse, teke no actlion,

'PRINT' = to queue the flle for printing If It is a
disk file. Otherwlise, take no actlon.

1LISTY = to queue the flle for printing and delete
It 1§ It |s a disk file. Otherwise, take 1
no actlon.

1PUNCH! = to output on paper tape punch.

l IRENAME® = to change fllename]

FILE = lv,ic To specify the name of the frlle Involved In the OPEN Op Op 1'FORxx.DAT!

or CLOSE statement. The file name format Is FLNAME.EXT.

Default condltlons: FLNAME = FLNAME.DAT

FLNAME . = FLANME,
(nut) = FORxx.DAT
where xx = two-diglt unlt number
1# the fllenames of the sams file In the OPEN and the
CLOSE statements are different, the file Is renamed. L
S SN I E— —

PROTECTION = oc, v ’1 To speclty a protectlion code. For example: Op Op [M057

PROTECTION = "155

Table 3.20A

FORTRBN-10 OPEN and CLOSE Statements

OPEN/CLOSE STATEMENTS . 109

Possible
Argument Value* Function Open* [Close* [Default Value

DIRECTORY = To speclfy the directory of the flle., Most frequent use Op Op |User's own
Is fo specify the PPN of the flle. To specify a PPN PPN
of [123456,654321], use any of the three ways:

(1) Singie-precision array:
OPEN (unt t=1, DIRECTORY=PATH, ...)
where PATH and Its elements are:
DIMENSION PATH(2)
PATH(1)="123456 1IproJect number
PATIH(2)="654321 {programmer number

{2) Double preclision array:
OPEN(unit=1,DIRECTORY=PATH,...)
where PATH and ifs elements are:
DOUBLE PRECISION PATH(2)}
PATH(1)="000000123456000000654321
PATH(2)="0

(3) Literal constants:

OPE!N(untt=1, DIRECTORY="123456,654321",...)
BUFFER COUNT =| 1v,lc To speclfy the number of /0 buffers to be assigned to Op Ig |Monitor default
a particular device. value

FILE SIZE = v, lc To specify disk flle slze In words Op tg [Monltor default

VERSION = oc, v
BLOCK SIZE = Iv,lc To specify block slze for all storage media except Op lg {Monitor default
disk and DECtape.

arsion number of the named flle Op Oop |0

RECORD SIZE = | |v,l¢ To specify record sfze In words. Required argument when Oop tg [Monitor default
specifylng random access mode. value

ASSCTATE Ty In random access mode, It provides storage for the number | Op Ig
VARIABLE of the record to be accessed next If the program being
executed were to contlnue to sequential access records
starting from the current READ, For example, If record
aumber 3 was read, the ASSOCIATE VARIABLE Is 4.

—_— - - SUSRNUI S

PARITY = two To set the parlty check system for magtape operaftion. Op tg |System default
possible Two possible values are 'ODD! and 'EVEN'. value

DENSITY = five To set the packing denmslty of magtape. Flve values are Op ig |System defauit
values [. '200', '556', *800', '1600', and_'625Q!. B e e e

DIALOG = none The use of this option in an OPEN statement enables you Op g
iv,array to supersede or defer, at execution time, the values
previously asslgned to the arguments of the statement.
The System will return a message at the user's terminal:

UNIT=n:/ACCESS=SEQINPUT/MODE=ASCi |
ENTER NEW FILE SPECS. END WITH AN ESC.

Only the changed file specs needed be entered,

ERR = s To go to statement No. s when there Is an error during Op Op |Error stop
the executlon of the OPEN or the CLOSE statement.

* egend: Ic = Integer constant; Iv = Integer varfablie;
le = {iteral constant; Iv = {1teral varlables
oc = octal constant,

Op = optional; Ig = lgnored.

TABLE 3,20B FORTRAN-10 OPEN and CILOSE Statements

[y

110 CHAPTER 3 FORTRAN-10

Example: OPEN(UNIT=1, FILE='INPUT.DAT')
Other FORTRAN statements follow.
CLOSE (UNIT=1,FILE="0LD.DAT")

Function: Here we have the same unit number for the OPEN and the
CIOSE statements, but they are different file name
arguments. This is equivalent to renaming a file at the
CIOSE time. The INPUT.DAT is renamed as OLD.DAT.

3.17 Format Statements

The FORMAT statements in FORTRAN-10 are in general compliance with the’
standard FORTRAN, Therefore, only-a brief summary will be given here.

The FORMAT statement has a general form of
n FORMAT (S , S, ...)

where n is the statement number and each S is a data field specifier. The
various data field specifiers are now summarized as follows:

(1) Numeric fields In the following list, "w" is an integer
specifying ~the field width; "d" is an integer specifying the number of decimal
places to the right of the decimal point or, for the G-format, the number of
significant digits. For the D, E, F, and G inputs, the position of the decimal
point in the external field takes precedence over the value of d in the format.
This means that the decimal point of the input data need not be exactly at the
specified column of the format. However, the data must be entered within the
field specified in the format.

Floating-polint type format Fw.d
Exponent-type format Ew.d
Double precision Dw.d

General format:

Real & double precision Gw.d
Integer & logical Gw
Comp lex 2Gw.d
Integer format lw
Octal format Ow
(2) Numeric fields with scale factor Scale factors may be specified

for D, E, F and G formats. A scale factor is written as nP where P is the
identifying character and n is a signed or unsigned integer that specifies the
scale factor.

For the F-type conversions (or G-type, if the external field is decimal
fixed point), the scale factor specifies a power of ten so that:

External number = (internal number) * 10P

FORMAT Statements . 111

For the D, E, and G (external field not decimal fixed point) formats, the
scale factor multiplies the number by a power of ten, but the exponent is
changed accordingly leaving the number unchanged except in form., For example,
if the statement: FORMAT(F8.3,E16.5) 1is used to print out two values A and B:

the same numbers under a format of FORMAT (~1PF8.3,2PE16.5) would produce a
printout of: -

In input operations, the F-type data are the only type affected by the scale
factor.

(3) Logical field The logical data field specifier is:
Lw

where "w" is an integer specifying the field width. If the format is used in an
input operation, the first nonblank character in the data field is T or F, the
value of the logical variable will be stored as TRUE or FALSE respectively. If
the entire data _field is blank or empty, a value of FALSE is stored. If the
format is used in an output operation, (w-1l) blanks followed by T or F will be
output if the value of the logical variable is TRUE or FLASE respectively.

(4) Variable field width The numeric fields may appear in a
FORMAT statement without the specification of the field width "w" or the number
of places after the decimal point "d". When this format is used in an input
operation, the input data can be entered in a "free form" style so long as a
delimiter is used to separate two neighboring data. Any illegal character in a
numeric field can be used as a delimiter. However, a good practice is to use
either a comma (,) or a blank ()} as a delimiter, For example, input according
to the format:

10 FORMAT (2F,E,2I,D)
might appear as:
-2.34, 2.345, 0.5623E-01, 56, 783, 3.4567234569D+01

If such a format is used in an output operation, FORTRAN automatically assume
the following field specifiers:

Format Becomes
D D25.16
E E15.7
F F15.7
G G15.7 or G25.16
I I15
0 015

(5) Alphanumeric fields The format of an aphanumeric field is:
Aw or Rw

The maximum value of "w' is 5 for single precision, 10 for double precision.
The A-field deals with variables containing left-justified, blank-filled
characters; the R-field deals with variable containing right-justified,
zero-filled characters.

112 CHAPIER 3 FORTRAN-10

(6) Alphanumeric data within a format statement Use nH format or
enclose the alphanumeric data in single quotes. See examples below:

10 FORMAT (17H PROGRAM COMPLETE)
10 FORMAT (' PROGRAM COMPLETE')

(7) Complex field Complex dquantitites are transmitted as two
independent real quantities. The format specifier consists of two successive
real specifiers or one real repeated specifier. For example, the following

format can accommodate four complex quantitites:

10 FORMAT (4F10.4, 2E14.5, F10.5, F10.3)

(8) $ format descriptor A "$" format descriptor at the end of an
output FORMAT is used to suppress the carriage return (and the associated line
feed) at the end of the current record, except when the FORMAT is automatically
repeated when the WRITE statement list contains more items than those in the
FORMAT. One typical application is shown in the example below:

Example: The following is a segment of a FORTRAN-10 program:
10 FORMAT (' ANSWER YES OR NO 'S$)
11 FORMAT (A3)
WRITE (6,10)

READ(5,11)ANSWER

Function: When this segment of the program is executed, the following
will appear on the user's terminal:

ANSWER YES OR NO > (User answers YES or 0 here)

(9) Print control descriptor. When FORTRAN output file is printed on a
printer or a terminal, the first character of each line (or record) is reserved
for the carriage control character which controls the spacing operations of the
printer or the terminal. The FORMAT should have a beginning field of 1lHa where
"a" is a desired control character. Table 3.21 1lists the FORTRAN-10 print
control characters.

3.18 FORTRAN-10 Device Control Statements

The FORTRAN-10 device control statements are normally used for magtape
operation control, although they also work well with DECtapes and can be used to
simulate disk devices. These tape control statements provide a set of run-time
tape control instructions.

In order to execute these stantements, magtapes must first be MOUNTed,
and a logical name of be given, where "u" is the logical unit for that tape
unit in the FORTRAN program. Therefoe, if the device control statements are
used in a FORTRAN-10 program, preliminaries such as the following must be
carried out before the execution of the FORTRAN program*:

*Unless a run-time subroutine, such as RMOUNT, is available to mount a tape.
See Section 3.21.

Device Control Statements

113

Print ASCI I
Control Character |Octal Value Function
space 012 Skip to next line; skip to next page
(form feed) after 60 lines.
0 zero d;;m Sklp a ;Y;e
-—~“;*;66 - O{; o Form feed - éo for;ép of n;;f page
~H~7;WET;;““M - ‘Supp;;;;~;klpplné_— overprlnfrfhe IIne
b““; asferlsk 'déir o @Skip to next Iine‘wITh no formfeed.
- m?ﬁaé o 012-V _@Skibj;wo Ilnes.
2 two o 020 ‘m“.u.@Space 1/2 of a page.
3 three 013 7Spaceki;% of a page. o
/ slash N ‘\Vaéﬁ"“Am>_@Space 1/6 of a page.
__ﬁ. perlod moéérﬂwdﬁﬂ-@Triple épace wlfh a";ermfeed after
every 20 lines printed.
——~*:“eo;;;"~”~”~*~“7"~*6£i"““wmm @Double sbgﬁe with ;gformfeed after
every 30 lines printed.
Table 3.21 FORTRAN-10 Print Control Characters

@=No effect on a terminal.

DRIVE MT9

LJMOUNT MT9:u/WE/VID:B313

Here, the VID used is for illustration.

If there are more than one tape for the

job, the above preliminaries must be done for every tape unit needed in the

program.

114 CHAPTER 3 FORTRAN-10

The device control statements are now summarized in Table 3.22:

Statement Function
REWIND u Move and re-position the file back to the first record.
UNLOAD u Rewind the source reel so that the tape is complely off

the take-up reel. The tape wlil be ready for unloading.

BACKSPACE u |Backspace one record except If 1t is already at record
No.1. This statement cannot be used for files set up

for random access,|ist=directed,or NAMEL|ST-controlled
/0 operations.

-

ENDFILE u Lerfe an endflle record In fthe file located on device u.

SKIP RECORD u Sklip one record on device u.

SKIP FILE u -

BACKFILE w |Backspace to the first record of the file preceding the
current one.

Skip one file which follows immediately the current one.

Table 3,22 FORTRAN-10 Device Control Statements

3.19 FORTRAN-10 Subprogram Statements

Subprograms are procedures that are used repeatedly in a program or among
the users, and therefore it is more convenient to define such common procedures
so that they may be referenced. The arguments for such a common procedure are
made general enough so that the subprograms can be utilized widely. These
arguments are called dutmy arguments. Dummy arguments in a FORTRAN-10 program
may be one of the following: (1) variables, (2) array name, (3) subroutine
identifiers, (4) function identifiers, or (5) statement label identifiers that
are denoted by the symbol "*", "$", or "&".

Subprogram Statements 115

These subprogram statements are now summarized in Table 3,23:

Statement

Function

NAME (argl,argl,...,argn) = expression

This defines an internal subprogram, where NAME 1s the name
assigned, (argl,arg2,...) ls a list of dummy arguments.

TYPE FUNCTION NAME(argl,arg?,...,argn)

where TYPE = optlional type specification such as INTEGER,

REAL, et.
(argl,arg2,,...) = a |lst of dummy arguments.

SUBROUTINE NAME(argl,arg2,...,argn)

CALL NAME(argl,arg2,...,argn)

J Definition of a subroutine and calling a subroutine

ENTRY NAME(argl,arg2,...,argn)

Multiple entry specification where:

NAME = name to be assigned to the desired entry point.
Rules of muitiple entry in a FORTRAN-10 subroutien are given
later.

RETURN

RETURN

Return the control form +the subroutine to the calling
program. Next statement executed Is one Immediately
following the calling statement in the calling program.

This Is a multiple-return statement, where ¥ is an integer
constant, variable or expression. Rules of multiple return
are glven alter.

Table 3.23 A Summary of FORTRAN-10 Subprogram Statements

3.

Often, many subprograms share a common computational procedure. Although
these common procedures can again be made into subprograms to be called by
subprograms, an alternative is to construct one subprogram with many entrance
points. In Figure 3.2, a flow chart is shown for three entrance points and one
exit. The entrance points are labeled as SUB (the front entrance), PTA and PTB
(two side entrances). The program segments are represented as Segments 1, 2 and

116 CHAPTER 3 FORTRAN-10

SUBROUT INE SUB(A,B,C,D,X,Y)
Segment 1 *1 Program
Data needed: Segment 1
A,B,C,D J
N r__Am,www.,,w”““mvw“wwummw,~
| ENTRY PTA(A,B,C,D,X,Y)
{- Segment 2 1 | Program
| Data needed: | 1 Segment 2
A,B,C ‘
Result: X ;
muh KR e e e S .
- ENTRY PTB(A,D,Y)
]
- Yo e e e e e+ e e e e S e
| Segment 3 ! . Program
i Data needed: Segment 3
D z
' Result: Y |
| frem ——— PR
i E
@g':URN . RETURN
A i
: I

Figure 3.2 An Example of Multiple Entry Subprogram

The following rules on ENTRY should be noted:
(1) An ENTRY statemnet may not be placed in the main program.
(2) An ENTRY statement may not be placed in a DO loop.

(3) There is no need for the arguments of wvarious ENTRY statements to
agree with each other.

(4) Value of function must be returned by the use of current ENTRY name.

The statement RETURN k enables the selection of any labeled statement of
the calling program as a return point. When the multiple returns form of this
statement is executed, the assigned or calculated value of x specifies that the
return is to be made to the kth statement label in the argument list of the
calling statement. The value of k should be a positive integer that is equal to
or less than the number of statement labels given in the argument list of the
calling statement. If k is less than 1 or is larger than the number of
available statement labels, a standard return operation is performed.

FORTRAN Subprograms - DEC

117

SUBPROGRAM LIBRARIES IN FORTRAN

3.20 Selected FORTRAN-10 Subprograms Developed by DEC (Table 3.24)

Subprogram
Name Effect
DATE (ARRAY) "ARRAY" is a dimensioned variable in the calling prSogram with 2

elements. The sucou+|ne will return the values:
ARRAY (1) DD-Mm', ARRAY(2) "m-YY"'
When ARRAY is printed with a 2A5 field format,

the result Is

DD-Mmm~YY, for example, 19-Aug-80, the date when the subprogram
was executed. To force the "month" part Into all upper case
letter, +the following two statements should be inserted between
the CALL DATE and WRITE statements:

ARRAY(1) = ARRAY(1) .AND. “777777777677

ARRAY(2) = ARRAY(2) .AND. "“577777777777

Then +he above dafe example would be printed as 19-AUG-80

ERRSET(N)

ERRSN?(I J)

code Table deflned by DEC.

TIME(X) or TIME(X,Y)

These subroutines will return a string constant X as "HH:MM' as
the current time In a 24-hour clock notation, and ' SS.S' for vV,
where HH hour, MM= mlnufes, SS S seconds.

To control the typeout of execution-time arithmetic error

messages. Message [s suppressed after N occurences.

To de+erm|ne the exac+ nature of an error on READ, WRITE, OPEN
and CLOSE +that was trapped with the "ERR= s" option In the
sTafemenf. The subroutine will return two Integers |,J. The

(l, combination describes the nature of error according to a

(See Appendlx H of Reference 4.)

EXIT To +erm|na+e The subprograﬁ
_PRELQAQ(M) ’To re]ease %Bé“]oéje;| unl;'u o
SAVAA&;;;_MM_‘ I;Hee+s i;e argument ot f;e“]asf random numbe;“ (ln;erpre+ed as
Integer) Thaf has been generated by the function RAN.
SETRAN(T) The s+ar#lng value of feem;;;c+lon RAN is set to 1. If 1=0, RAN

uses Its normal starting value.

SORT('OUTPUT=INPUT/switches')

The argument is a string representing a SORT prgram command.
The details on the SORT program are glven In Chapter 7. Check
with local installation whether this subprogram Is installed In
the system.

Table 3.24

A Selection of FORTRAN-10 Subprograms Developed by DEC

118 CHAPTER 3 FORTRAN-10

3.21 Selected Subprograms Developed at the Pitt Computer Center

A group of subprograms have been developed and implemented in the
FORTRAN-10 at the installation of the University of Pittsburgh. These
subprograms are included for the convenience of Pitt users. DEC System-10
installation elsewhere would have similar types of subprograms but geared
particularly to the local needs. These programs are often made available to
other installations by exchange, lease or purchase. Since these suprograms have
beeen implemented already in the Pitt FORTRAN-10, no additional monitor commands
are needed to call them, For users elsewhere, they must confirm first with
their installation personnel whether such or similar subprograms are available
in their facilities.

The subprograms will be outlined according to their general functions:

(1) Supplementary library functions This group of subprograms are
all functions and is used to supplement the DEC-supplied l)brary functions (such
as square root and sine function) which are given in Section 3.6 as Table 3.8.
These supplementary functions are listed in Table 3.25:

Type)
Function Form Definition Argument | Function

Tangent

Real (radians) TAN tan(x) real real

Real (degrees) TAND tTan(x) real real
Cotangent

Real (radians) COTAN cot (x) real real

Real (degrees) COTAND cot (x) real real
Gamma function GAMMA (x) real real
Error functlon ERF erf(x) real real
Comp lementary
erro function ERFC 1 - erf(x) real real
CPU time XEQTIM CPU time In dummy real

milliseconds

Table 3.25 Supplementary FORTRAN-10 Library Functions
Developed at the University of Pittsburgh

(2) Bit manipulation in a memory word

A DEC-10 memory word contains 36 bits. The hardware store a 37th bit for
parity check, but that is of no concern to the user. The bits are numbered from
0 to 35 (from the most significant bit side to the least) as shown in
Figure 3.3(a}.

The group of bit-manipulation subprograms can be used for a wide range of
applications, such as data re-formatting in data transfer between a magtape and
disk storage. One particular application is in the area of character~storage
manipulation. Since ASCII~coded characters are coded into 7-bit bytes, where a
"byte" is a unit consisting any number of bits, each memory word can accommodate

FORTRAN Subprograms - Pitt 119

I T N O

01234567 « v v v v v o v o o o o s 34 35

(a) Bit Positions

it [onz Jos |one Do

5 lo]
.

. } |

Q= -6 ! 7 —13 !14«#* 20!21*”‘*27 28+=34 i35 - Bit
Positions

(b) ASCIi|-Coded Character Storage

Figure 3.3 DEC-10 ASCII Storage Format

5 characters with one bit left over. The standard ASCII coded storage format is
shown in Figure 3.3(b). As a result, bit-35 is always filled with a zero-bit
when the word is an ASCII-coded word.

These subprograms are now outlined below:

Function: LDB(K1, Length, Z)

| L
] Source word to be processed
L Byte length in bits (integer, 1 to 36)
e - -————— Gtarting bit position (integer,
0 to 35)
Function: LDBN (N, Length, 7)
I | l— Source word to be processed
L Bytesize in bits/byte (1 to 36)
wonm——— Byte number (from left to right)

%nLength—ai
Effect: Source word Z: [CoeXXX X X . J
\\and]

Returned function Eo o0 mx X X x?]
value: G e e ,,,M_‘..A,_,,g,.s_l

120 CHAPTER 3 FORTRAN-10
Subroutine: CALL DPB (K1, Length, 72, 71)
| i
Starting bit position———~—-———*-J ! :
Byte length—- - -~ -
Destination word - - —
Source word — - R
Subroutine: CALL DPBN (N, Length, 22, 21
| ! '
Starting byte number — - B : _
Bits/byte R |
Destination word —— —— = e e :
Source word - - o
K1 and Length are integer constants or variables,
Effect "Before":
22: [é;y Y . y!u uuu Q;z 2 : . .wgﬁ
N lLength--=
21: [»zf)w........ww,lac.rxx_x_}
= =
"After": /,«»-"'/ Deposi/;.//
. . ’/byté/// .
72: Ly Yy ..ylexxx x!z Za.o. .o,
Z1: » lvw........vvzzaazzx
Z1 is unchanged. 22 is unchanged except the deposited
bute field.
Example : CALL DPB(0,7,72,IDB(7,7,%1))
Exexution of this call will replace the first character in
in the word Z2 by the second character in Z1 as shown below:
71 . "LZTfiﬂi:“Ta”]
o
LDB LT
%2 hagil
S ° R R g+ chr A Rt s g 7 5]
Function: LSH (word, shift)
Lga number of places to be shifted:
+integer=shift left
—integer=shift right
—e—— WOXd to be processed
Effect: word: YUYycx xfaq
LSH(word,+k) |y yrry z @z x a2 0°++0]
Example: M = LSH('ABCDE',-14)

The string word 'ABCDE' is shifted right 14 places. The
shifted-out bits are replaced by 0's. Thus, the returned
function value is M = ' ABC', because the ASCII-coded
character for code 0000000 is null.

FORTRAN Subprograms - Pitt

Subroutine: CALL ZERO(ARRAY(I), ARRAY(J))
First element ———ww—"AA——J l
Last element
Effect: Set all elements within the specified range to zero.
Array may be of any type.
Example: CALL ZERO(A(1), A(100))
Set A(l), A(2), ...A(100) to O.
Subroutine: CALL ASCEND(Z, KFIRST, KLAST)
Array name«—J !
First subscript—»mv«~——-i
Last subscript O O
Effect: Sort the Z-array from Z(KFIRST) to Z(KLAST) in an
ascending order and then store them in the same array
locations.
Example: CALL ASCEND(X,1,100)
Sort the X-array from X(1) to X(100) and store them in
ascending order as the new X-array from X (1) to X(100) .
Subroutine: CALL SPRAY (Z(I), Z(J), VALUE)
First element—ﬂvvﬂmnww—J ‘
Last element —— S
Common value — = 0 e e
Effect: Set the Z-array of the specified subscript range to equal
to the VALUE .
Example: CALL SPRAY(Z1),72(100),1.5)
Set z2(1), Z(2),..., Z(100) to equal 1.5.
Subroutine: CALL MOVE (A2(I), A2(J) , AI(K))
First element of |
Destination array ————!
Last element of
Destination array —-
First element of
SOULCE array — = = =" = T e
Effect: Copy an array A2 from Al in this manner:

A2(I) = Al(K)

A2(&;-; Al (K+J-1)

Al and A2 arrays should be of the same type, and avoid
double precision or complex array because the second word
of each two-word element won't copy.

122 CHAPTER 3 FORTRAN-10
(4) Device and file specifications
Subroutine: CALL RMOUNT (w , VID , WE , Label , Serial)
Integer, logical }
unit unmber !
|
String constant or }
variable, VID:
"WE' (or 0) or 'WL' —m e .
'SL' (or 0) or 'NL'
Used only if Label='NL' "~ "~ .
Effect: A run—-time MOUNT instruction for a magtape or DECtape.
Example: CALL RMOUNT(1,'B313',0,0)
This is equivalent to issuing two monitor commands before
the execution of the FORTRAN program:
.DRIVES MT9
JMOUNT MT9:1/WE/VID:B313
Subroutine: CALL IFILE (unit, filename, extension, PPN)
CALL OFILE (unit, filename, extension, PPN)
where unit = integer constant, logical unit number
filename = S5-character or less string
extenstion =3-character or leess string
PPN = 12-digfit octal constant
Default extension is 'DAT'.
Default PPN is user's own PPN.
Effect: These are respectively equivalent to:
OPEN (unit=u, file="f7 lename, extension’,directory="p,pn’,
access="gseqin')
CLOSE (unit=u, fle="filename, extension’,directory="p,pn’,
access="geqout"')
Example: CALL IFILE(1,'INPUT')

Specify user's INPUT.DAT as an input file on unit 1.

CALL IFILE(2,'SAMPLE', 'TMP',"115103320571)

Note that although 6-character filename is given, IFILE and
OFILE will only treat it as a maximum of 5-character string
(because it is coded as ASCII instead of SIXBIT). Hence
the search will be for a file SAMPL.TMPin the PPN of
[115103,320571], instead of the specified file SAMPLE.TMP.
If there is actually a file named SAMPL.TMP, this wrong
file will be called. If there is no SAMPL.TMP, execution
comes to an error stop.

The SUBSET Package

123

3.22 The SUBSET Subprogram Package

Many subprograms have been developed by the faculty, staff and students

at the University of Pittsburgh.

Many of these are polished, optimized, and

well documented. One such work is the SubSET (SUBprograms to Simplify Encoding

Tasks) ,

T written by
[121403,250321].

Ronal K.
By permission of Mr.
with their subset properties will be outlined.
chosen as to represent the salient points

Nicholas* and stored under the PPN of
Nicholas, a selection of SUBSET programs
These subset properties are so
in these subprograms. For more

details, the readers are referred to Reference 7, the SUBSET manual.

(1) Subprograms to report job information

Subprogram | Furction or
Name Subroutine Effect
CORE(IP) subroutine Return an integer 7P which is equal to the number of
pages ©of core memeory for the current program with
the fractions of page rounded to the next higher
value.
IDENT(ID) Function or | As a subroutine, it returns the argument 7p as 15
subroutine ASCITI characters in a 3-word array. The form of the
ASCII string is '[m,n]' in three words., As a
function, it also returns with "m" in the left half,
and "n" in the right half of the returned word, both
as 6—dlglt octal constants.
LOCATE(L) Function or | As a subroutlne, it sets the user's]Ob to station L.
subroutine If used as a function, it returns a functional value
of .TRUE. 1if successful. Otherwise, it returns a
value of .FALSE.
MYJOB(JOB) Function or Return a functlonal value or argunent JOB the job
subroutlne number.
MYLINE(LINE) Functlon or | It returns the argument LINE as the user's TTY llne
subroutine number. If it is a Batch Job, the value is negatlve.
MYNAME(NAME) subroutlne It returns a 3-w0rd array contalnlng 1> ASCII
characters left-justified, which is the user's name
as stored in the system.
WKDAY (TODAY) | subroutine

It returns a 3=character string which is the day of
the day of the week, such as 'Mon', 'Tue', eftc. :

(2) Subprograms to manipulate arrays

These subprograms deal with initializing an array, copying one array onto
another, and finding minimum and maximum elements in an array.

*Ronal K.

Nicholas,

Research Associate,

Division of Research in Medical

Education, School of Medicine, University of Pittsburgh

124 CHAPTER 3 FORTRAN-10
Subroutine: CALL coey (21, INCZ1, 78, INCZ2, NTOTAL)
First source array element——J
Zl-increment——
First destination array element———
Z2-increment - =
Total number of elements—m - -~ i
to be copied
Effect: Copy the zl-array by the Z2-array with indicated starting array
elements and subscript increments. 21 and Z2 are the first array
elements in the specified copying process. If the first element
has a subscript of one, the subscript may be omitted, and Z1 or
72 may appear as array hame.
Example: CALL COPY(X,1,Y,1,10)
This is equivalent to: DO 5 1=1,10
5 Y(I)=X(I)
CALL COPY(X(2),2,Y(9),3,10)
This is equivalent to: DO 5 1-1,10
5 Y (3*I+6)=X{(2*I)
Subroutine: CALL INTT(7%, NTOTAL, ZVALUE)
Array element or array name-———- }
Total number of Z-element -
to be initialized
Common value —---
If 2 is an array name, initialization begins from z(l). 1If Z is
an array element, initialization begins from the given element.
7 must be a single precision, real or integer type.
Effect: Initialize the array by the common value given
Example: CALL INIT(X,50, 0.0)

Set X(1),X(2),...X(50) to zero.

CALL INIT(K(10), 50, KODE)
Set K(10),K(11),...K(59) to a pre-defined value KODE.

CALL INIT(POINT, 132, ' ')
Set POINT(1),POINT(2),...POINT(132) as blanks.

The SUBSET Package 125

Function or MINX (ITEM(I) , ITEM(J) , INDEX)
Subroutine: MAXX (ITEM(I) , ITEM(J) , TNDEX)
AMINX (ITEM(I) , ITEM(J) , INDEX)
AMAXX (REAL(I) , REAL(J) , INDEX)

First element in the specified
array, integer or real a I
indicated. e

Last element in the specified
array, integer or real as
indicated. ———~ -

Order of Min or Max element in
the specified list., - - T R

Effect: As a subroutine, it returns as INDEX the order of the minmax
number in the given array. The actual subscript of the minmax
element and the value of that minmax will require additional
computation:

subscript of the minmax element = I + INDEX ~1
MINMAX = ITEM(I+INDEX-1) or REAL(I+INDEX-1)

As a function, it only returns the value of the minmax element.
The subprogram is not applicable to double precision or complex
list.

Example: CALL AMAXX(X(3),X(300),INDEX)
If the subroutine returns a value of INDEX as 59, then the
maximum of the X-list is X(61).

(3) Subprogram to control TTY characteristics

This subprogram will accomplish at execution-time a control of terminal
characteristics properties in the same manner of what the monitor command
"SET TTY" can accomplish at the monitor level. In a monitor command "SET TTY"
(or "TTY" in its short form), the general form is: TTY keyword , where keyword
is either one of a complementary pair of arguments, such as PAGE or NO PAGE . In
the subprogram shown here named as SETTTY, the "PAGE" part of the example is
called a Code Parameter, and yes—or—-no part is called a Logic Parameter. Thus
the entire group of TTY commands can be coded into a single subroutine. This is
shown next.

128

CHAPTER 3 FORTRAN~10

Subroutine:

Effect:

Example:

|

Subroutine:

Effect:

Example:

Function or

B
STXBIT (7, I, J)

L

] number of character to be converted to

’ the SIXBIT code
Destination of character after conversion
-Source of ASCII character to be converted

When used as a subroutine, it returns an array I which is the
SIXBIT code of 7. If it is used as a function, the first 6
characters (padded with blanks if necessary) is returned as the
value of the function.

Note: Both Z and I are dimensioned variables for the same ASCII
characters. However, SIXBIT codes contain six characters
per word, while the ASCII codes contain five characters per
word. So, the dimensions of Z and I could be different.

CALL SIXBIT('SYS', IDUM, 3)
Convert the ASCII string 'SYS' into SIXBIT code as IDUM.

anim = e S VO

CALL RUN(DEVICE,SAVEFILE,PPN)

|

!

]

— PPN (octal) where file is
stored. PPN=0 if in own disk.

E—

! - —-—-- Octal number, SIXBIT code of
5 filename of the EXE file to
: be run.
b . STXBIT code of the device
(no colon)
e.g. DSK = "446353000000
(or = "0)
DTAD = "446441200000
SYS = "637163000000

This is equivalent to STOP for the current program; then apply a
monitor command of ".RUN DEV:NAME[m,n]".

If DEVICE='SYS', 'NEW' or 'OLD' in SIXBIT codes, then PPN=(Q, 1f
DEVICE='MT7', 'MI8', or 'MT9' in SIXBIT code, the tape must be
already properly mounted and positioned.

The RUN subroutine will drop all files in the old program. 1f
files in the old program are dropped without first a CALIL RELEAS
call, the files will be lost if they are output files, and will
not be available as intermediate data for running the chained
programs.

CALL RUN(0,SIXBIT('DEPT',IDUM,4), "115103320571)
This is equivalent to STOP the current program and then issue a
monitor command of "RUN DEPI'[115103,320571]1"

For the convenience of users and by the permission of Mr. Nicholas, a
copy of the SUBSET package is stored also in ENG: , which is the depository of
the Engineering Program Library.

SSP and IMSL Libraries 129

Since SUBSET is not in the FORTRAN-10 Library but in the user-library the
EXECUTE command of a FORTRAN program should specifically includes
"ENG:SUBSET.REL/LIB" in its list, if the program calls any subprogram in the
SUBSET package. In a batch job, a $INCLUDE card is necessary. For example, the
following is an execution command for a program that calls the SUBSET
subprograms:

JEXECUTE MAIN.FOR, SUB1.FOR, ENG:SUBSET.REL/LIB

3.23 Comprehensive FORTRAN Subroutine Libraries

In an academic user community of the size of the University of
Pittsburgh, it has been estimated that more than 500 "new" Gaussian Elimination
programs for simultaneous equations were written, debugged, and run each vyear.
Many of these came out of courses in programming, numerical methods, engineering
analysis, economics, statistics, etc. Most of them are justifiable as they
provide the students opportunities to sharpen their skill on a familiar problem
with proven methods of solution. But some were unnecessary exercises to
"re-invent the wheels" since the elements of student learning are absent in
those exercises. Such activities are pure waste of human resources and computer
resources.

It may be said that computer applications in radically different
disciplines share a common ground that an application must be first
mathematically formulated. Once so done, the differences between disciplines
disappear. For example, the Gaussian Elimination method would be applicable
whether the problem was orginated from a power system load flow study or a
regression study from an economics model, so long as the problem is formulated
as a system of linear simultaneous algebraic equations. Thus a software package
containing standard solutions to various mathematical problems is a very useful
tool to computer users in all disciplines.

In order for such a software package to serve a large group of users in
many diversified fields, there are several important requirements that must be
satisfied:

(1) These programs should be callable in the forms of subprograms
(subroutines or functions), so that the user's program remains in control,

(2) These subprograms should be self-contained so that they will not
require further attention from the users other than passing the values of the
subprogram parameters into the subprograms., In particular, there should not be
any input/output statements in the subprogram. Thus the input/output operations
become the responsibility of the user's main program. There are exceptions, of
course, A subprogram may be designed explicitly for input or output operations,
for example, to list and tabulate a matrix.

(3) In order to adapt to the need of different users, each subprogram
should have capability of adjustable dimension size as well as user—controllable
error level., At least an estimate of error level should be available as a
return value of the subprogram, so that the user, who has no knowledge of how
this subprogram was constructed, will know the level of performance of the

program.

{4) There should be clear and uniform documentations available to guide
the users in defining the subprograms, including the dummy parameters, their
types, array sizes, order in the parameter list, and their meaning.

130 CHAPTER 3 FORTRAN-10

At the University of Pittsburgh, two such packages are available. One is
the International Mathematical & Statistical Library (IMSL) which in on-line as
PRG:IMSL.REL. The other is the IBM Sc1ent1f1c Subroutine Package (SSP)*, which
is not on-line but may be placed on-line by running a UARC program, as it to a
great extent duplicates the IMSL coverage. Both packages are comprehensive in
their coverage, and their documentations are excellent but voluminous., However,
when a user is faced with a big programming job whose purpose may be mode than a
programming exercise, it will be cost-effective to use these library facilities,
even to the extent of modifying the program in order to fit,

Both IMSL and SPP contain -several hundred subprograms in the package, and
therefore are too voluminous to include in this bbok even in a summarized form.
Only the areas of coverage will be given here to give the readers some idea
about the comprehensiveness of the package:

IBM SSP Package:

Statistics:

Probit analysis

Variance analysis
Correlation analysis
Multiple linear regression
Polynomial regression
Canonical correlation
Factor anaysis
Discriminant analysis

Time series analysis

Data screening and analysis
Nonparametric tests

Random number generation
Distribution functions

Mathematics:

Inversion

Eigenvalues and eigenvectors

Simulataneous linear algebraic equations

Transpositions

Matrix arithmetics

Matrix partitioning

Matrix tabulation and sorting of rows or columns
Elementary operations on rows or columns of matrices
Matrix factorization

Integration and differentiation of given or tabulated functions
Solution of systems of first-order differential equations
Fourier analysis of given or tabulated functions

Bessel and modified Bessel function evaluation

Gamma function evaluation

Jacobina elliptic functions

Elliptic, exponential, sine cosine, Fresnel integrals
Real roots of a given equation

Real and complex roots of a real polynomial equation.
Polynomial arithmetic

Polynomial evaluation, integration, differentiation

*For Pitt users, the SSP source programs are stored and available on a UARC tape
B4473. See Section 10.7 for the UARC procedure.

SSP and IMSL Libraries 131

Chebyshev, Hermite, Laguerre, Legendre polynomials
Minimum of a function i
Approximation, interpolation, and table construction

IMSL Package: Chapter headings:

Analysis of Variance

Basic Statistics

Catagorized Data Analysis

Differential Equations; Quadrature; Differentiation
Eigensystem Analysis

Forecasting; Econometrics; Time Series; Transforms
Generation and Testing of Random Numbers
Interpolation; Approximation; Smoothing

Linear Algebraic Equations

Mathematical and Statistical Special Functions
Non-Parametric Statistics

Observation Structure; Multivariate Statistics
Regression Analysis

Sampling

Utility Functions

Vector, Matrix Arithmetic

Zeros and Extrema, Linear Programming

Example: Suppose we are to solve a system of 50 simultaneous
equations. In matrix form, the equation is Ax=B. Suppose
the matrices have been stored as DATA.DAT file with a
format of (10E12,4). In the file, the first 250 records
are the A-matrix by rows, and the last 5 records are the
B-matrix. Obtain the solution by using the IMSL package.

Program: The first step of this problem is naturally to search
through the IMSIL documentation to see if there is one that
fits the problem. Such a problem would of course be under
the category of "Linear Algebraic Equations." When such a
program is found, the user's task is to prepare a main
program which calls this IMSL routine. To do so, the main
program will include the following parts:

(1) To provide storage (the DIMENSION statement) for all
variables required for the problem. This not only
includes the problem variables but also the working
variables. The IMSL documentation gives detailed and
exact requirements of DIMENSION.

(2) To input the data needed by the Library subprogram.
This includes opening of files, reading of data from
file or terminal, calculations needed for the
subprogram parameters, etc.

(3) To call the IMSL subprogram.
(4) To output the results.

IMSL: Reference Manual (Reference 10) is a seven—inch
thick reference book. The content is divided into 17

chapters, and Chapter L is on Linear Algebraic Equations.
In going through the routines in that chapter, the routine

132

CHAPTER 3 FORTRAN-10

LEQTLIF lists the following headings:

IMSL ROUTINE NAME - LEQT1F
PURPOSE - LINEAR EQUATION SOLUTION - FULL STORAGE
MODE - SPACE ECONOMIZER SOLUTION

This seems to satisfy our need. The other information
listed by the Manual are included below:

USAGE - CALL LEQTIF(A,M,N,IA,B,IDGT,WKAREA,IER)

A - Input matrix of dimension N by N containing the
coefficient matrix of the equation Ax=B. On
output, "A" is replaced by the LU decomposition
of a rowwise permutation of "A",

M — Number of right-hand matrix columns (input)

N -~ Order of "A" and number of rows in "B".

Ia - Row dimension of A and B exactly as specified in
the DIMENSION statement of the calling program.

B - Input matrix of dimension NxM containing

right-hand side of the eguation Ax=B. On output,
the NxM solution X replaces B.

IDGT - Input option: If IDGT>0, the elements of A and B
are assumed to be correct to IDGT decimal digits
and the routine performs an accuracy test. If
IDGT equals zero, the accuracy test is bypassed.

WKAREA - Work area of dimension >= N.

IER - Error parameter (output).

Terminal error: IER=129 indicates that matrix A
is algorithmically singular.

Warning error: IER=34 indicates that the
accuracy test failed. The computed solution may
be in error by more than can be acccunted for by
the uncertainty of the data. This warning can be
produced only if IDGT is greater than O.

In checking over these specifications, the following
should be noted:

(1) The matrices A and B will be destroyed after the
execution of the subprogram. If they are needed later,
protect them by copying them into another set of
variables, or else later re-read the input data A and
B.

(2) The DIMENSION for the storage declaration should be
A(IA,IA), B(IA,M). In addition, it is also the
responsibility of the calling program to dimension
WKAREA (IA) . Note that B is dimensioned as a matrix
with two subscripts. 1If B is a vector, as in most
linear systems, B should be dimensioned as B(IA,1l).

(3) N and IA need not be the same, but N should never
exceed IA. If N is an input quantity and made to be
less than IA, such a calling program would be able to
solve a system of linear algebraic equations of an
order specified by the user up to IAth order. Such a
program would increase its flexibility immensely.

SSP and IMSL Libraries 133

The program for this problem is listed below:

DIMENSION A(100,100),B(100,1) ,WKAREA(100)
%k% DEFINE THE SIZE OF PROBLEM "N"
WRITE(6,100): READ(5,101)N
100 FORMAT (/' ENTER NUMBER OF VARTABLES = 'S)
101 FORMAT(I) .
%%%* GET INPUT DATA FOR THE SUBPROGRAM
OPEN (UNIT=1,FILE="'DATA.DAT' ,ACCESS="'SEQIN"')
102 FORMAT (10E)
DO 10 I=1,N
10 READ(1,102) (A(I,J),J=1,N)
READ(1,102) (B(I,1),I=1,N)
k%k CALJ, IMSL SUBPROGRAM LEQTIF
M=1; TA=100; IDGT=0 !SUBROUTINE PARAMETERS
CALL LEQTIF(A,M,N,IA,B,IDGT,WKAREA,IER)
kx*k%*% OUTPUT THE RESULTS

103 FORMAT(/' X(',12,") ="', El12.4)
WRITE (6,103) ((I,B(I,1)), I=1,N)
STOP
END

Suppose we name the stored program EQUAT.FOR. This
program may be executed by a monitor command of:

.EXECUTE EQUAT.FOR, PRG:IMSL/LIB

With the dimension set up in EQUAT.FOR, it is capable to
solve a system of up to 100 equations. However, when
solving a large system, the accuracy requirement may be
difficult to satisfy because of the accumulation of
round-off and truncation errors during computations. Then
the accuracy test would fail in the subroutine execution,
giving the output IER a non-zero report.

The following is the computer printout of the execution:

LEXECUTE EQUAT.FOR, PRG:IMSL/LIB
FORTRAN 5A(621) : EQUAT.FOR

MAIN. OCTAL PROG SIZE=24167
LINK: Loading

[INKXCT EQUAT execution]

ENTER NUMBER OF VARIABLES = >100

X{(1) = 0.9996E+00
X(2) = 0.1996E+01
X(3) = 0.3000E+00
X(4) = 0.4000E+00

etCuavnse

134 CHAPTER 3 FORTRAN-10

3.24 Array Processor

In many engineering and scientific applications, the computations often
involve a relatively simple algorithm done repeatedly on log sequences of data.
The data may beone-dimensional sequence of numbers (called vectors), or two or
more dimensional sequences, (called arrays), for example, a matrix. In such
computations, heavy overhead must be absorbed on such "book-keeping" chores of
array indexing, loop counting, and data fetching. In conventional computer
organization, such overhead must be absorbed by incorporating them sequentially
into the program, thus competing for machine time with the actual computations.

The concept of parallel processing is to provide hardware so that independent
computations can be performed at the same time and result in a much faster
program execution.

At the DEC-10 installation at the University of Pittsburgh, one such parallel
processor, the Floating Point 190L Array Processor, is attached to the System B.
The AP190L is a pipe-line machine that allows the calculations of overhead for
elements up stream to be performed simultaneously with the element computations
down stream (therefore, the name pipe-line).

To the FORTRAN users, the usage of the AP190L means to incorporate certain
AP190I, subroutines calls in the main program. Thus, writing a FORTRAN program
that uses the array processor to process data follows the general rules of
FORTRAN subroutine calls. There are a few exceptions:

(1) The array processor must be initialized before using other AP190L
subroutines.

(2) Data must be transferred from DEC-10 to AP190L main data memory
before the array processor can operate on it,

(3) 1In order to synchronize the AP190L with the DEC-10, wait calls (in
FORTRAN subroutine) must be inserted in the program whenver the
DEC-10 and AP190L interact.

(4) At the end of array processor execution, data must be transferred
back to DEC-10.

All of these steps are done by calling certain appropriate AP190L
subroutines. These subroutines are listed and explained in details in
Reference 11. The AP190L Math Library contains subroutines distributed in the
following areas:

(1) Data transfer and control operations

(2) basic vector arithmetic

(3) Vector-to-scalar operations

(4) Vector comparison operations

(5) Complex vector arithmetic

(6) Data formatting operations

{7) Matrix operations

Array Processor 135

(8) Fast Fourier Transform‘operations
(9) Auxiliary operations

{10) Utility operations

(11) signal processing operations

(12) Table memory operations

Users should consult Reference 12 concerning the usage of the AP190L.
Specifically, note the following:

(1) API190L is attached to DEC-10 System B as a periperal device.
Therefore, Jjust as a tape unit, it requires the "DRIVE" monitor
command to reserve it. See Section 8.10.

(2) It requires 1large core memory, larger than most time-sharing
allocations. Therefore, array processor runs should be submitted as
batch jobs. See Chapter 9 on how to submit batch jobs.

3.25 FCORTRAN 77

The FORTRAN programming language is one language that is wuniversally
available, on computers, large or small, in the United States, Europe or the
rest of the world. Thus, its greatest contribution is that a program written in
FORTRAN can be run on any machine, after some minor modifications are made if
required.

The ANSI FORTRAN IV, standardized by ANSI in 1966, has exercised a
powerful influence on the portability characteristics of the language. 1In the
past fifteen years, there have been many enhancements of the ANSI standard, and
FORTRAN-10 is one such enhancement. Varieties of these enhanced versions
generate a new need for standardization. Thus, an updated standard language was
announced in 1977, unofficially known as FORTRAN 77, and was formally
standardized in 1978 by ANSI (ANSI Standard X3.9-1978). While compliance with
the ANSI standard is voluntary, it is expected that all FORTRAN languages will
be in time evolved into this new version. By necessity, programming languages
must have universal portability, and the ANSI standard has powerful influences.
FORTRAN-10 already possesses most of the new attributes of FORTRAN 77, but many
keywords and syntax are different. It 1is expected that in a few years,
FORTRAN-10 will be replaced by some version of FORTRAN 77. Details of
FORTRAN 77 are outside the scope of this book. Interested readers are referred
to References 13 and 14 for more details.

136

10.

11.

12.

13.

14.

CHAPTER 3 FORTRAN-10

REFERENCES

PROGRAMMING WITH FORTRAN, Byron S. Gottfried, Quantum Publishers, New
York; 1972.

PROBLEM SOLVING AND STRUCTURED PROGRAMMING IN FORTRAN, F. L. Friedman
and E. B. Koffman, Addison-Wesley Publishing, Reading, Massachusetts;
1977.

DEC SYSTEM-10 FORTRAN—loe LANGUAGE MANUAL, Second Edition,
DEC-10-1FORA-B-D, Digital Equipemnt Corporation, Maynard, Massachusetts;
1974. :

DEC SYSTEN-10 FORTRAN PROGRAMMER'S REFERENCE MANUAL, AA-0944E-TB, Digital
Equipemnt corporation, Maynard, Massachusetts; 1977.

FORTRAN-10 USERS GUIDE, Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; 1977.

PITT Programmer Notes, Special FORTRAN-10 Issue, Vol. 6, No. 5, August
1, 1977, Computer Center, University of Pittsburgh, Pittsburgh,
Pennsylvania; 1977.

SUBSET MANUAL, Ronal K. Nicholas, University of Pittsburgh, Pittsburgh,
Pennsylvania; 1977.)

SYSTEM/360 SCIENTIFIC SUBROUTINE PACKAGE (360A-CM~03X) PROGRAMMER MANUAL,
IBM Corporation, White Plains, New York.

Help File PRG:IMSL.HLP, the Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; 1980.

IMSL, LIBRARY REFERENCE MANUAL, Edition 7, International Mathematical and
Statistical Library, Houston, Texas; 1979.

AP MATH LIBRARY MANUAL, .Volumes 1,2,3, Floating Point System, Inc.; 1979.

Help File PRG:APU.HLP, Computer Center, University of Pittsburgh,
Pittsburgh, Pennsylvania; 1980.

FORTRAN 77, FEATURING STRUCTURED PROGRAMMING, L. P. Meissner and E. I.
Organick, Addison-Wesley Publishing Company, Reading, Massachusetts;
1980.

PROGRAMMING IN STANDARD FORTRAN 77, A. Balfour and D. H. Marwick,
North-Holland Inc., New York, New York; 1979.

CHAPTER 4

FORTRAN PROGRAM DEBUGGING

4.1 Introduction

One of the most important but unpleasant stage in the computer usage is
the necessity to debug a program. The development of programs and the
subsequent computer execution involve a long chain of events that requires
error-prone human actions. These errors can be committed by beginners as well
as by experienced users. The detection and the correction of such errors affect
seriously the productivity of computer processing applications. These errors
are colloquially referred to as "bugs", and the process of detecting and
correcting them as "debugging."

The following are some typical statistics regarding the productivity of
professionals in the software industry:

The average productivity of a professional programmer in U,S. is
seven (7) FORTRAN statements per working day.

For the software development done at a commercial software firm, 65% of
the software cost is attributed to debugging.

Breakdown of computer processing failures: (From Reference 1)
Hardware failure 1%
System software failure 2%
Operator mistakes 5%
System failure 2%
Programming errors 90%

It becomes increasingly obvious in the commercial software industry that
debugging 1is by far the major component of the software cost. Conversely, when
a software is developed on a fixed budget, the extent of testing and debugging
becomes the deciding factor for the software product reliability. In the recent
decade, considerable efforts have been spent on the optimal allocation of
resources, design of software structure for easy testability and
maintainability, test and validation procedures for softwares, and various
diagnostic aids, resulting collectively in a new discipline known as "software
engineering."

137

138 CHAPTER 4 FORTRAN PROGRAM DEBUGGING

Unfortunately, in spite of advances in the software engineering
practices, the degugging of a computer program still depends heavily on the
user's knowledge and experiences in the problem, the language, and the computer,
and hence it still remains largely as an art. However, over the years,
accumulation of expertise and experience has resulted in the formulation of
reliable guide lines, good programming styles and practices, checklists for DO's
and DON'T's, error reporting and diagnostic facilities in the language
processors, and on-line debugging tools. It is, therefore, the purpose of this
chapter to present a summary of these practices, with particular emphasis on
FORTRAN program debugging.

4.2 Types of Errors

When a FORTRAN program fails, a very natural inclination of the user is
to suspect that "the computer is acting up again." Mercifully, the computer
system hardware and system software failures are quite rare nowadays, and
program errors can usually be blamed as the culprits,

Program errors are the most numerous and also the most complicated. They
may be divided into the following categories:

(1) Errors in problem definition They are errors resulted from failures
to translate the problem requirement faithfully into the program
requirements.

(2) Coding errors They appear in several different forms:

a. Transcription errors, such as incorrect punctuations and misspellings.
Such errors will usually be caught at compiling, but some errors may
go undetected as perfectly legal program statements and a compiler may
not always be able to spot them.

b. Syntax errors, or improper use of FORTRAN statements. Such errors can
usually be detected by the compiler.

c. Structural errors or failures to provide correct interaction between
two parts of a program, for example, failure to pass the values of
parameters from the main program to a subprogram correctly.

(3) Logic errors, These are failures to sequence the problem
properly at a detailed level.
For the remainder of the chapter, we will be mainly concerned in two
areas of the debugging process:

(1) How can we reduce the incidence of all types of bugs?

(2) If a bug exists, how do we detect and correct it?

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	000a
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138

